Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rossella Menghini is active.

Publication


Featured researches published by Rossella Menghini.


Circulation | 2002

Insulin-Dependent Activation of Endothelial Nitric Oxide Synthase Is Impaired by O-Linked Glycosylation Modification of Signaling Proteins in Human Coronary Endothelial Cells

Massimo Federici; Rossella Menghini; Alessandro Mauriello; Marta Letizia Hribal; Francesca Ferrelli; Davide Lauro; Paolo Sbraccia; Luigi Giusto Spagnoli; Giorgio Sesti; Renato Lauro

Background—Hyperglycemia impairs functional properties of cytosolic and nuclear proteins via O-linked glycosylation modification (O-GlcNAcylation). We studied the effects of O-GlcNAcylation on insulin signaling in human coronary artery endothelial cells. Methods and Results—O-GlcNAcylation impaired the metabolic branch of insulin signaling, ie, insulin receptor (IR) activation of the IR substrate (IRS)/phosphatidylinositol 3-kinase (PI3-K)/Akt, whereas it enhanced the mitogenic branch, ie, ERK-1/2 and p38 (mitogen-activated protein kinase). Both in vivo and in vitro phosphorylation of endothelial nitric oxide synthase (eNOS) by Akt were reduced by hyperglycemia and hexosamine activation. Insulin-induced eNOS activity in vivo was reduced by hyperglycemia and hexosamine activation, which was coupled to increased activation and expression of matrix metalloproteinase-2 and -9; these phenomena were reversed by inhibition of the hexosamine pathway. Finally, carotid plaques from type 2 diabetic patients showed increased endothelial O-GlcNAcylation with respect to nondiabetics. Conclusions—Our data show that hyperglycemia, through the hexosamine pathway, impairs activation of the IR/IRS/PI3-K/Akt pathway, resulting in deregulation of eNOS activity.


Circulation | 2009

MicroRNA 217 Modulates Endothelial Cell Senescence via Silent Information Regulator 1

Rossella Menghini; Viviana Casagrande; Marina Cardellini; Eugenio Martelli; Alessandro Terrinoni; Francesca Amati; Mariuca Vasa-Nicotera; Arnaldo Ippoliti; Giuseppe Novelli; Gerry Melino; Renato Lauro; Massimo Federici

Background— Aging is a major risk factor for the development of atherosclerosis and coronary artery disease. Through a microarray approach, we have identified a microRNA (miR-217) that is progressively expressed in endothelial cells with aging. miR-217 regulates the expression of silent information regulator 1 (SirT1), a major regulator of longevity and metabolic disorders that is progressively reduced in multiple tissues during aging. Methods and Results— miR-217 inhibits SirT1 expression through a miR-217–binding site within the 3′-UTR of SirT1. In young human umbilical vein endothelial cells, human aortic endothelial cells, and human coronary artery endothelial cells, miR-217 induces a premature senescence-like phenotype and leads to an impairment in angiogenesis via inhibition of SirT1 and modulation of FoxO1 (forkhead box O1) and endothelial nitric oxide synthase acetylation. Conversely, inhibition of miR-217 in old endothelial cells ultimately reduces senescence and increases angiogenic activity via an increase in SirT1. miR-217 is expressed in human atherosclerotic lesions and is negatively correlated with SirT1 expression and with FoxO1 acetylation status. Conclusions— Our data pinpoint miR-217 as an endogenous inhibitor of SirT1, which promotes endothelial senescence and is potentially amenable to therapeutic manipulation for prevention of endothelial dysfunction in metabolic disorders.


Journal of Clinical Investigation | 2005

Timp3 deficiency in insulin receptor–haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-α

Massimo Federici; Marta Letizia Hribal; Rossella Menghini; Hiroko Kanno; Valentina Marchetti; Ottavia Porzio; Susan W. Sunnarborg; Stefano Rizza; Matteo Serino; Veronica Cunsolo; Davide Lauro; Alessandro Mauriello; David Smookler; Paolo Sbraccia; Giorgio Sesti; David C. Lee; Rama Khokha; Domenico Accili; Renato Lauro

Activation of inflammatory pathways may contribute to the beginning and the progression of both atherosclerosis and type 2 diabetes. Here we report a novel interaction between insulin action and control of inflammation, resulting in glucose intolerance and vascular inflammation and amenable to therapeutic modulation. In insulin receptor heterozygous (Insr+/-) mice, we identified the deficiency of tissue inhibitor of metalloproteinase 3 (Timp3, an inhibitor of both TNF-alpha-converting enzyme [TACE] and MMPs) as a common bond between glucose intolerance and vascular inflammation. Among Insr+/- mice, those that develop diabetes have reduced Timp3 and increased TACE activity. Unchecked TACE activity causes an increase in levels of soluble TNF-alpha, which subsequently promotes diabetes and vascular inflammation. Double heterozygous Insr+/-Timp3+/- mice develop mild hyperglycemia and hyperinsulinemia at 3 months and overt glucose intolerance and hyperinsulinemia at 6 months. A therapeutic role for Timp3/TACE modulation is supported by the observation that pharmacological inhibition of TACE led to marked reduction of hyperglycemia and vascular inflammation in Insr+/- diabetic mice, as well as by the observation of increased insulin sensitivity in Tace+/- mice compared with WT mice. Our results suggest that an interplay between reduced insulin action and unchecked TACE activity promotes diabetes and vascular inflammation.


Diabetes | 2006

Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling

Valentina Marchetti; Rossella Menghini; Stefano Rizza; Alessia Vivanti; Tiziana Feccia; Davide Lauro; Akiyoshi Fukamizu; Renato Lauro; Massimo Federici

Dysfunction of mature endothelial cells is thought to play a major role in both micro- and macrovascular complications of diabetes. However, recent advances in biology of endothelial progenitor cells (EPCs) have highlighted their involvement in diabetes complications. To determine the effect of glucotoxicity on EPCs, human EPCs have been isolated from peripheral blood mononuclear cells of healthy donors and cultured in the presence or absence of high glucose (33 mmol/l) or high glucose plus benfotiamine to scavenge glucotoxicity. Morphological analysis revealed that high glucose significantly affected the number of endothelial cell colony forming units, uptake and binding of acLDL and Lectin-1, and the ability to differentiate into CD31- and vascular endothelial growth factor receptor 2–positive cells. Functional analysis outlined a reduced EPC involvement in de novo tube formation, when cocultured with mature endothelial cells (human umbilical vein endothelial cells) on matrigel. To explain the observed phenotypes, we have investigated the signal transduction pathways known to be involved in EPC growth and differentiation. Our results indicate that hyperglycemia impairs EPC differentiation and that the process can be restored by benfotiamine administration, via the modulation of Akt/FoxO1 activity.


Circulation | 2004

G972R IRS-1 Variant Impairs Insulin Regulation of Endothelial Nitric Oxide Synthase in Cultured Human Endothelial Cells

Massimo Federici; Assunta Pandolfi; Elena A. De Filippis; Giuliana Pellegrini; Rossella Menghini; Davide Lauro; Marina Cardellini; Mario Romano; Giorgio Sesti; Renato Lauro; Agostino Consoli

Background—Impaired insulin-mediated vasodilation might contribute to vascular damage in insulin-resistant states. Little is known about insulin regulation of nitric oxide (NO) synthesis in insulin-resistant cells. The aim of this work was to investigate insulin regulation of NO synthesis in human umbilical vein endothelial cells (HUVECs) carrying the IRS-1 gene G972R variant, known to be associated with impaired insulin activation of the PI3-kinase (PI3-K) pathway in transfected cells. Methods and Results—HUVECs were screened for the presence of the G972R-IRS-1 (HUVEC-G972R) variant by restriction fragment length polymorphisms. After 24-hour exposure to 10−7 mol/L insulin, endothelial NO synthase (eNOS) mRNA (reverse transcription–polymerase chain reaction), eNOS protein levels (Western blotting), and NOS activity (conversion of [3H]arginine into [3H]citrulline) were increased in wild-type HUVECs (HUVEC-WT), whereas they did not change from baseline in HUVEC-G972R. Compared with HUVEC-WT, in HUVEC-G972R after 2 and 10 minutes of insulin stimulation, IRS-1–associated PI3-K activity was reduced by 47% and 32%, respectively; Akt phosphorylation was decreased by 40% at both time points; and eNOS-Ser1177 phosphorylation was reduced by 38% and 51%, respectively. In HUVEC-WT, eNOS-Thr495 phosphorylation decreased after insulin stimulation. In contrast, in HUVEC-G972R, eNOS-Thr495 phosphorylation increased after insulin stimulation and was 40% greater than in HUVEC-WT. Conclusions—Our data demonstrate that genetic impairment of the (IRS)-1/PI3-K/PDK-1/Akt insulin signaling cascade determines impaired insulin-stimulated NO release and suggest that the G972R-IRS-1 polymorphism, through a direct impairment of Akt/eNOS activation in endothelial cells, may contribute to the genetic predisposition to develop endothelial dysfunction and cardiovascular disease.


Diabetes | 2009

TIMP3 Is Reduced in Atherosclerotic Plaques From Subjects With Type 2 Diabetes and Increased by SirT1

Marina Cardellini; Rossella Menghini; Eugenio Martelli; Viviana Casagrande; Arianna Marino; Stefano Rizza; Ottavia Porzio; Alessandro Mauriello; Anna Solini; Arnaldo Ippoliti; Renato Lauro; Franco Folli; Massimo Federici

OBJECTIVE Atherosclerosis is accelerated in subjects with type 2 diabetes by unknown mechanisms. We identified tissue inhibitor of metalloproteinase 3 (TIMP3), the endogenous inhibitor of A disintegrin and metalloprotease domain 17 (ADAM17) and other matrix metalloproteinases (MMPs), as a gene modifier for insulin resistance and vascular inflammation in mice. We tested its association with atherosclerosis in subjects with type 2 diabetes and identified Sirtuin 1 (SirT1) as a major regulator of TIMP3 expression. RESEARCH DESIGN AND METHODS We investigated ADAM10, ADAM17, MMP9, TIMP1, TIMP2, TIMP3, and TIMP4 expression levels in human carotid atherosclerotic plaques (n = 60) from subjects with and without diabetes. Human vascular smooth muscle cells exposed to several metabolic stimuli were used to identify regulators of TIMP3 expression. SirT1 small interference RNA, cDNA, and TIMP3 promoter gene reporter were used to study SirT1-dependent regulation of TIMP3. RESULTS Here, we show that in human carotid atherosclerotic plaques, TIMP3 was significantly reduced in subjects with type 2 diabetes, leading to ADAM17 and MMP9 overactivity. Reduced expression of TIMP3 was associated in vivo with SirT1 levels. In smooth muscle cells, inhibition of SirT1 activity and levels reduced TIMP3 expression, whereas SirT1 overexpression increased TIMP3 promoter activity. CONCLUSIONS In atherosclerotic plaques from subjects with type 2 diabetes, the deregulation of ADAM17 and MMP9 activities is related to inadequate expression of TIMP3 via SirT1. Studies in vascular cells confirmed the role of SirT1 in tuning TIMP3 expression.


Diabetes | 2007

Mice Heterozygous for Tumor Necrosis Factor-α Converting Enzyme Are Protected From Obesity-Induced Insulin Resistance and Diabetes

Matteo Serino; Rossella Menghini; Loredana Fiorentino; Roberta Amoruso; Alessandro Mauriello; Davide Lauro; Paolo Sbraccia; Marta Letizia Hribal; Renato Lauro; Massimo Federici

OBJECTIVE—Tumor necrosis factor (TNF)-α is known to affect insulin sensitivity, glucose, and lipid metabolism through alternative and redundant mechanisms at both translational and post-translational levels. TNF-α exerts its paracrine effects once the membrane-anchored form is shed and released from the cell membrane. TNF-α cleavage is regulated by TNF-α converting enzyme (TACE), which regulates the function of several transmembrane proteins, such as interleukin-6 receptor and epidermal growth factor receptor ligands. The role of TACE in high-fat diet (HFD)-induced obesity and its metabolic complications is unknown. RESEARCH DESIGN AND METHODS—To gain insights into the role of TACE in metabolic disorders, we used Tace+/− mice fed a standard or high-fat diet for 16 weeks. RESULTS—We observed that Tace+/− mice are relatively protected from obesity and insulin resistance compared with wild-type littermates. When fed an HFD, wild-type mice exhibited visceral obesity, increased free fatty acid and monocyte chemoattractant protein (MCP)1 levels, hypoadiponectinemia, glucose intolerance, and insulin resistance compared with Tace+/− mice. Interestingly, Tace+/− mice exhibited increased uncoupling protein-1 and GLUT4 expression in white adipose tissue. CONCLUSIONS—Our results suggest that modulation of TACE activity is a new pathway to be investigated for development of agents acting against obesity and its metabolic complications.


Gastroenterology | 2009

Tissue Inhibitor of Metalloproteinase 3 Deficiency Causes Hepatic Steatosis and Adipose Tissue Inflammation in Mice

Rossella Menghini; Stefano Menini; Roberta Amoruso; Loredana Fiorentino; Viviana Casagrande; Valeria Marzano; Federica Tornei; Pierfrancesco Bertucci; Carla Iacobini; Matteo Serino; Ottavia Porzio; Marta Letizia Hribal; Franco Folli; Rama Khokha; Andrea Urbani; Renato Lauro; Giuseppe Pugliese; Massimo Federici

BACKGROUND & AIMS Obesity-driven, low-grade inflammation affects systemic metabolic function and can lead to insulin resistance, hepatic steatosis, and atherosclerosis. Decreased expression of tissue inhibitor of metalloproteinase 3 (Timp3) is a catalyst for insulin resistance and inflammation. Timp3 is a natural inhibitor of matrix metalloproteinases, tumor necrosis factor-alpha-converting enzyme (TACE), and vascular endothelial growth factor receptor 2, and therefore could affect signaling processes involved in inflammation and angiogenesis. METHODS We assessed the effects of Timp3 on inflammation, tissue remodeling, and intermediary metabolism in mice, under conditions of environmental stress (high-fat diet), genetic predisposition to insulin resistance (insulin receptor [Insr] haploinsufficiency), and varying levels of inflammation (Timp3 or Tace deficiencies). Metabolic tests, immunohistochemistry, real-time polymerase chain reaction, and immunoblotting were used to compare data from wild-type, Insr(+/-), Timp3(-/-), Insr(+/-)Timp3(-/-), and Insr(+/-)Tace(+/-) mice placed on high-fat diets for 10 weeks. RESULTS Insr(+/-)Timp3(-/-) mice showed a higher degree of adipose and hepatic inflammation compared with wild-type, Insr(+/-), Timp3(-/-), and Insr(+/-)Tace(+/-) mice. In particular, the Insr(+/-)Timp3(-/-) mice developed macrovesicular steatosis and features of severe nonalcoholic fatty liver disease, including lobular and periportal inflammation, hepatocellular ballooning, and perisinusoidal fibrosis. These were associated with increased expression of inflammatory and steatosis markers, including suppressor of cytokine signaling 3 and stearoyl CoA desaturase 1, in both liver and adipose tissue. Interestingly, Insr(+/-)Tace(+/-) mice had a nearly opposite phenotype. CONCLUSIONS Timp3, possibly through its regulation of TACE, appears to have a role in the pathogenesis of fatty liver disease associated with obesity.


Circulation | 2005

Phosphorylation of GATA2 by Akt Increases Adipose Tissue Differentiation and Reduces Adipose Tissue–Related Inflammation A Novel Pathway Linking Obesity to Atherosclerosis

Rossella Menghini; Valentina Marchetti; Marina Cardellini; Marta Letizia Hribal; Alessandro Mauriello; Davide Lauro; Paolo Sbraccia; Renato Lauro; Massimo Federici

Background—Obesity-related inflammation is emerging as a major cause of insulin resistance and cardiovascular diseases. GATA2 transcription factor is an inhibitor of adipogenesis and an activator of vascular cells. We hypothesized that GATA2 activity is controlled by insulin during adipogenesis, linking metabolic homeostasis and inflammation. Methods and Results—We show that insulin induces GATA2 phosphorylation on serine 401 in a PI-3K/Akt–dependent manner. Insulin-dependent phosphorylation of serine 401 impairs GATA2 translocation to the nucleus and its DNA binding activity. A GATA2 mutant not phosphorylable by Akt (GATA2S401A) acts similarly to wild-type GATA2. In contrast, a GATA2 mutant that mimics Akt phosphorylation (GATA2S401D) is restrained in the cytoplasm. Cultured preadipocytes bearing GATA2S401A do not convert to adipocytes and express high levels of inflammatory cytokines like monocyte chemotactic protein-1 (MCP-1). On the contrary, GATA2S401D preadipocytes differentiate to adipocytes. When GATA2S401A preadipocytes are injected in mice fed a high-fat diet, they do not differentiate adequately into adipocytes, maintaining the expression of inflammatory markers like MCP-1. In contrast, injection of GATA2S401D preadipocytes in mice fed a high-fat diet results in development of adipocytes and no expression of inflammatory markers. Conclusions—GATA2 could be a new target in the prevention and treatment of obesity-related inflammation and its complications.


Hepatology | 2010

Increased tumor necrosis factor α–converting enzyme activity induces insulin resistance and hepatosteatosis in mice

Loredana Fiorentino; Alessia Vivanti; Michele Cavalera; Valeria Marzano; Maurizio Ronci; Marta Fabrizi; Stefano Menini; Giuseppe Pugliese; Rossella Menghini; Rama Khokha; Renato Lauro; Andrea Urbani; Massimo Federici

Tumor necrosis factor α–converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high‐fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C2C12 myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin‐dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3−/− mice have higher TACE activity compared with wild‐type (WT) mice. Timp3−/− mice fed a HFD for 5 months are glucose‐intolerant and insulin‐resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3−/− liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N‐methyltransferase and higher levels of liver fatty acid‐binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3−/− compared with WT mice. Conclusion: We have identified novel mechanisms, governed by the TACE–Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice. (HEPATOLOGY 2009.)

Collaboration


Dive into the Rossella Menghini's collaboration.

Top Co-Authors

Avatar

Massimo Federici

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Renato Lauro

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marina Cardellini

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Viviana Casagrande

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandro Mauriello

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Davide Lauro

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Maria Mavilio

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Stefano Rizza

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Ottavia Porzio

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Paolo Sbraccia

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge