Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roswanira Abdul Wahab is active.

Publication


Featured researches published by Roswanira Abdul Wahab.


Biotechnology & Biotechnological Equipment | 2015

An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

Nur Royhaila Mohamad; Nur Haziqah Che Marzuki; Nor Aziah Buang; Fahrul Huyop; Roswanira Abdul Wahab

The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies.


Enzyme and Microbial Technology | 2015

A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes

Nur Royhaila Mohamad; Nor Aziah Buang; Naji Arafat Mahat; Yen Yen Lok; Fahrul Huyop; Hassan Y. Aboul-Enein; Roswanira Abdul Wahab

In view of several disadvantages as well as adverse effects associated with the use of chemical processes for producing esters, alternative techniques such as the utilization of enzymes on multi-walled carbon nanotubes (MWCNTs), have been suggested. In this study, the oxidative MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) were used as a supportive material for the immobilization of Candida rugosa lipase (CRL) through physical adsorption process. The resulting CRL-MWCNTs biocatalysts were utilized for synthesizing geranyl propionate, an important ester for flavoring agent as well as in fragrances. Enzymatic esterification of geraniol with propionic acid was carried out using heptane as a solvent and the efficiency of CRL-MWCNTs as a biocatalyst was compared with the free CRL, considering the incubation time, temperature, molar ratio of acid:alcohol, presence of desiccant as well as its reusability. It was found that the CRL-MWCNTs resulted in a 2-fold improvement in the percentage of conversion of geranyl propionate when compared with the free CRL, demonstrating the highest yield of geranyl propionate at 6h at 55°C, molar ratio acid: alcohol of 1:5 and with the presence of 1.0g desiccant. It was evident that the CRL-MWCNTs biocatalyst could be reused for up to 6 times before a 50% reduction in catalytic efficiency was observed. Hence, it appears that the facile physical adsorption of CRL onto F-MWCNTs has improved the activity and stability of CRL as well as served as an alternative method for the synthesis of geranyl propionate.


World Journal of Microbiology & Biotechnology | 2016

Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments

Mohamed Faraj Edbeib; Roswanira Abdul Wahab; Fahrul Huyop

The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.


Biotechnology & Biotechnological Equipment | 2014

Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae

Roswanira Abdul Wahab; Mahiran Basri; Raja Noor Zaliha Raja Abdul Rahman; Abu Bakar Salleh; Mohd Basyaruddin Abdul Rahman; Naz Chaibakhsh; Thean Chor Leow

Most substrate for esterification has the inherent problem of low miscibility which requires addition of solvents into the reaction media. In this contribution, we would like to present an alternative and feasible option for an efficient solvent-free synthesis of menthyl butyrate using a novel thermostable crude T1 lipase. We investigated the effects of incubation time, temperature, enzyme loading and substrate molar ratio and determined the optimum conditions. The high conversion of menthyl butyrate catalyzed by crude T1 lipase in a solvent-free system is greatly affected by temperature and time of the reaction media. The highest yield of menthyl butyrate was 99.3% under optimized conditions of 60 °C, incubation time of 13.15 h, 2.53 mg, 0.43% (w/w) enzyme to substrate ratio and at molar ratio of butyric anhydride/menthol 2.7:1. Hence, the investigation revealed that the thermostable crude T1 lipase successfully catalyzed the high-yield production of menthyl butyrate in a solvent-free system. The finding suggests that the crude T1 lipase was a promising alternative to overcome shortcomings associated with solvent-assisted enzymatic reactions.


International Journal of Molecular Sciences | 2012

Combination of Oxyanion Gln114 Mutation and Medium Engineering to Influence the Enantioselectivity of Thermophilic Lipase from Geobacillus zalihae

Roswanira Abdul Wahab; Mahiran Basri; Mohd Basyaruddin Abdul Rahman; Raja Noor Zaliha Raja Abdul Rahman; Abu Bakar Salleh; Thean Chor Leow

The substitution of the oxyanion Q114 with Met and Leu was carried out to investigate the role of Q114 in imparting enantioselectivity on T1 lipase. The mutation improved enantioselectivity in Q114M over the wild-type, while enantioselectivity in Q114L was reduced. The enantioselectivity of the thermophilic lipases, T1, Q114L and Q114M correlated better with log p as compared to the dielectric constant and dipole moment of the solvents. Enzyme activity was good in solvents with log p < 3.5, with the exception of hexane which deviated substantially. Isooctane was found to be the best solvent for the esterification of (R,S)-ibuprofen with oleyl alcohol for lipases Q114M and Q114L, to afford E values of 53.7 and 12.2, respectively. Selectivity of T1 was highest in tetradecane with E value 49.2. Solvents with low log p reduced overall lipase activity and dimethyl sulfoxide (DMSO) completely inhibited the lipases. Ester conversions, however, were still low. Molecular sieves employed as desiccant were found to adversely affect catalysis in the lipase variants, particularly in Q114M. The higher desiccant loading also increased viscosity in the reaction and further reduced the efficiency of the lipase-catalyzed esterifications.


Biotechnology & Biotechnological Equipment | 2015

Modelling and optimization of Candida rugosa nanobioconjugates catalysed synthesis of methyl oleate by response surface methodology

Nur Haziqah Che Marzuki; Fahrul Huyop; Hassan Y. Aboul-Enein; Naji Arafat Mahat; Roswanira Abdul Wahab

Esters, such as methyl oleate, are functionally important compounds in many industrial sectors, mainly as components for manufacturing of emulsifiers, detergents, intermediate stabilizers and wetting agents. Acid functionalization of multi-walled carbon nanotubes (F-MWCNTs) by using a mixture of HNO3 and H2SO4 (1:3, v:v) was employed as the matrix for the adsorption of Candida rugosa lipase (CRL) as nanobioconjugates (CRL-MWCNTs) for the production of methyl oleate. Structural information of the developed CRL-MWCNTs was confirmed using Fourier Transform Infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy, which revealed a successful attachment of CRL onto the F-MWCNTs. Process parameters (reaction time, temperature and alcohol:acid molar ratio) were optimized for high percent conversion of methyl oleate. Structural analysis established that CRL was successfully attached to the surface of the F-MWCNTs. Under the optimized conditions, which were 13.87 h, 51 °C, molar ratio oleic acid:methanol (1:3.80), a high ester yield of 90.90% was attained. Also, under conditions of the shortest reaction time of 6 h, 47.07 °C and acid:methanol ratio of 1:2.54, the CRL-MWCNTs catalysed a 74.51% ester yield. Hence, we established that response surface methodology (RSM) can be a practical technique for the prediction of the conditions that favour the high yield production of methyl oleate. Under optimized conditions, the CRL-MWCNTs nanobioconjugates are potentially good and economical biocatalysts for the production of methyl oleate, as well as other types of commercially important fatty-acid methyl esters.


Biotechnology & Biotechnological Equipment | 2015

Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates

NurRoyhaila Mohamad; Fahrul Huyop; Hassan Y. Aboul-Enein; Naji Arafat Mahat; Roswanira Abdul Wahab

Terpene esters of short-chain fatty acids are essential oils that have big importance in food, cosmetic and pharmaceutical industries as flavours and fragrances. Geraniol and citronellol are the most important substances. Considering the ever-increasing demand for such products, their enzymatic production from natural raw materials by using environmentally friendly and economically attractive processes may prove advantageous. In this contribution, we would like to present an alternative option for the production of geranyl propionate using nanobioconjugates consisting of Candida rugosa lipase adsorbed onto multi-walled carbon nanotubes (CRL-MWCNTs). We investigated the effects of incubation time, temperature, solvent log P and substrate molar ratio, and determined the optimum conditions. The yield of geranyl propionate catalysed by CRL-MWCNTs nanobioconjugates was significantly influenced by two factors, namely, temperature and time of the reaction. Under the optimum reaction conditions of 55 °C, solvent n-heptane (log P = 4.0), geraniol to propionic acid molar ratio of 5:1 and reaction time of 6 h, the use of CRL-MWCNTs resulted in 51.3% production of geranyl propionate. Therefore, the investigation revealed that geranyl propionate was successfully synthesized under mild conditions with reasonably high yield within a short period of time. The CRL-MWCNTs nanobioconjugates demonstrated a potential as economical and environmentally smarter biocatalysts for the production of geranyl propionate.


Enzyme and Microbial Technology | 2018

Enzymatic esterification of eugenol and benzoic acid by a novel chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase: Process optimization and kinetic assessments

Fatin Myra Abd Manan; Nursyafreena Attan; Zainoha Zakaria; Aemi Syazwani Abdul Keyon; Roswanira Abdul Wahab

A biotechnological route via enzymatic esterification was proposed as an alternative way to synthesize the problematic anti-oxidant eugenyl benzoate. The new method overcomes the well-known drawbacks of the chemical route in favor of a more sustainable reaction process. The present work reports a Box-Behnken design (BBD) optimization process to synthesize eugenyl benzoate by esterification of eugenol and benzoic acid catalyzed by the chitosan-chitin nanowhiskers supported Rhizomucor miehei lipase (RML-CS/CNWs). Effects of four reaction parameters: reaction time, temperature, substrate molar ratio of eugenol: benzoic acid and enzyme loading were assessed. Under optimum conditions, a maximum conversion yield as high as 66% at 50°C in 5h using 3mg/mL of RML-CS/CNWs, and a substrate molar ratio (eugenol: benzoic acid) of 3:1. Kinetic assessments revealed the RML-CS/CNWs catalyzed the reaction via a ping-pong bi-bi mechanism with eugenol inhibition, characterized by a Vmax of 3.83mMmin-1. The Michaelis-Menten constants for benzoic acid (Km,A) and eugenol (Km,B) were 34.04 and 138.28mM, respectively. The inhibition constant for eugenol (Ki,B) was 438.6mM while the turnover number (kcat) for the RML-CS/CNWs-catalyzed esterification reaction was 40.39min-1. RML-CS/CNWs were reusable up to 8 esterification cycles and showed higher thermal stability than free RML.


Preparative Biochemistry & Biotechnology | 2017

Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads

Abdurrahman Adamu Isah; Naji Arafat Mahat; Joazaizulfazli Jamalis; Nursyafreena Attan; Iffah Izzati Zakaria; Fahrul Huyop; Roswanira Abdul Wahab

ABSTRACT The chemical route of producing geranyl propionate involves the use of toxic chemicals, liberation of unwanted by-products as well as problematic separation process. In view of such problems, the use of Rhizomucor miehei lipase (RML) covalently bound onto activated chitosan–graphene oxide (RML-CS/GO) support is suggested. Following analyses using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetry, properties of the RML-CS/GO were characterized. A response surface methodological approach using a 3-level-four-factor (incubation time, temperature, substrate molar ratio, and stirring rate) Box–Behnken design was used to optimize the experimental conditions to maximize the yield of geranyl propionate. Results revealed that 76 ± 0.02% of recovered protein had yielded 7.2 ± 0.04 mg g−1 and 211 ± 0.3% U g−1 of the maximum protein loading and esterification activity, respectively. The actual yield of geranyl propionate (49.46%) closely agreed with the predicted value (49.97%) under optimum reaction conditions (temperature: 37.67°C, incubation time: 10.20 hr, molar ratio (propionic acid:geraniol): 1:3.28, and stirring rate: 100.70 rpm) and hence, verifying the suitability of this approach. Since the method is performed under mild conditions, the RML-CS/GO biocatalyst may prove to be an environmentally benign alternative for producing satisfactory yield of geranyl propionate.


Carbohydrate Polymers | 2017

Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate

Nursyafiqah Elias; Sheela Chandren; Nursyafreena Attan; Naji Arafat Mahat; Fazira Ilyana Abdul Razak; Joazaizulfazli Jamalis; Roswanira Abdul Wahab

In this study, nanocellulose (NC) was successfully extracted from oil palm frond leaves (OPFL) using a combination of bleaching, alkaline treatment and acid hydrolysis. X-ray diffractogram revealed the extracted NC was crystalline with a crystallinity index of 70.2%. This indicates its suitability as nano-fillers for preparing the chitosan/nanocellulose (CS-NC) supports to immobilize Candida rugosa lipase (CRL) to produce the CRL/CS-NC biocatalysts. FTIR, FESEM and TGA characterizations of the CRL/CS-NC confirm the CRLs were successfully conjugated to the CS-NC supports. The air-dried CS-NC supports gave satisfactory immobilization of the CRLs (5.2mg/g) with the resultant CRL/CS-NCs catalysed conversions of ≥80% of butyl butyrate within 6h. Time course reaction profile revealed that 76.3% butyl butyrate conversion was achieved at 4h immobilization time using 3mg/mL of CRL/CS-NCs. NMR analyses on the purified butyl butyrate confirmed that the ester was successfully synthesized.

Collaboration


Dive into the Roswanira Abdul Wahab's collaboration.

Top Co-Authors

Avatar

Fahrul Huyop

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Naji Arafat Mahat

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Nursyafreena Attan

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aliyu Adamu

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar

Hassan Y. Aboul-Enein

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheela Chandren

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge