Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rotem Kadir is active.

Publication


Featured researches published by Rotem Kadir.


European Journal of Human Genetics | 2014

Autosomal recessive Adams–Oliver syndrome caused by homozygous mutation in EOGT, encoding an EGF domain-specific O-GlcNAc transferase

Idan Cohen; Eldad Silberstein; Yonatan Perez; Daniella Landau; Khalil Elbedour; Yshaia Langer; Rotem Kadir; Michael Volodarsky; Sara Sivan; Ginat Narkis; Ohad S. Birk

Autosomal recessive Adams–Oliver syndrome was diagnosed in three remotely related Bedouin consanguineous families. Genome-wide linkage analysis ruled out association with known Adams–Oliver syndrome genes, identifying a single-homozygosity ∼1.8-Mb novel locus common to affected individuals (LOD score 3.37). Whole-exome sequencing followed by Sanger sequencing identified only a single mutation within this locus, shared by all affected individuals and found in patients from five additional apparently unrelated Bedouin families: a 1-bp deletion mutation in a predicted alternative splice variant of EOGT, leading to a putative truncated protein. RT-PCR demonstrated that the EOGT-predicted alternative splice variant is ubiquitously expressed. EOGT encodes EGF-domain-specific O-linked N-acetylglucosamine transferase, responsible for extracellular O-GlcNAcylation of epidermal growth factor-like domain-containing proteins, and is essential for epithelial cell-matrix interactions. F-actin staining in diseased fibroblasts showed apparently intact cell cytoskeleton and morphology, suggesting the EOGT mutation acts not through perturbation of cytoskeleton but through other mechanisms yet to be elucidated.


Journal of Medical Genetics | 2016

UNC80 mutation causes a syndrome of hypotonia, severe intellectual disability, dyskinesia and dysmorphism, similar to that caused by mutations in its interacting cation channel NALCN

Yonatan Perez; Rotem Kadir; Michael Volodarsky; Iris Noyman; Hagit Flusser; Zamir Shorer; Libe Gradstein; Ramon Y. Birnbaum; Ohad S. Birk

Background A syndrome of profound hypotonia, intellectual disability, intrauterine growth retardation with subsequent failure to thrive, dyskinesia and epilepsy was diagnosed in Bedouin Israeli families. Mild dysmorphism was evident: plagiocephaly, broad forehead with prominent nose, smooth philtrum and congenital esotropia. We set out to decipher the molecular basis of this syndrome. Methods Genome-wide linkage analysis and fine mapping were done. Whole exome sequencing data were filtered for candidate variants within locus. Validation and segregation of the mutation was assayed via Sanger sequencing. UNC80 expression pattern was analysed through reverse transcription PCR. Results Homozygosity mapping followed by fine mapping identified a 7.5 Mb disease-associated locus (logarithm of odds score 3.5) on chromosome 2. Whole exome and Sanger sequencing identified a single homozygous nonsense mutation within this locus, segregating within the families as expected for recessive heredity and not found in a homozygous state in 150 Bedouin controls: c.151C>T, p.(R51*) in UNC80. Conclusions The syndrome described is caused by a mutation in UNC80, truncating most of the 3258 amino acids highly conserved encoded protein, that has no known motifs. UNC80 bridges between UNC79 and the cation channel NALCN, enabling NALCNs role in basal Na+ leak conductance in neurons, essential for neuronal function. The phenotype caused by the UNC80 mutation resembles that previously described for homozygous NALCN mutations.


European Journal of Human Genetics | 2014

Isolated foveal hypoplasia with secondary nystagmus and low vision is associated with a homozygous SLC38A8 mutation

Yonatan Perez; Libe Gradstein; Hagit Flusser; Barak Markus; Idan Cohen; Yshaia Langer; Mira Marcus; Tova Lifshitz; Rotem Kadir; Ohad S. Birk

Foveal hypoplasia, always accompanied by nystagmus, is found as part of the clinical spectrum of various eye disorders such as aniridia, albinism and achromatopsia. However, the molecular basis of isolated autosomal recessive foveal hypoplasia is yet unknown. Individuals of apparently unrelated non consanguineous Israeli families of Jewish Indian (Mumbai) ancestry presented with isolated foveal hypoplasia associated with congenital nystagmus and reduced visual acuity. Genome-wide homozygosity mapping followed by fine mapping defined a 830 Kb disease-associated locus (LOD score 3.5). Whole-exome sequencing identified a single missense mutation in the homozygosity region: c.95T>G, p.(Ile32Ser), in a conserved amino acid within the first predicted transmembrane domain of SLC38A8. The mutation fully segregated with the disease-associated phenotype, demonstrating an ∼10% carrier rate in Mumbai Jews. SLC38A8 encodes a putative sodium-dependent amino-acid/proton antiporter, which we showed to be expressed solely in the eye. Thus, a homozygous SLC38A8 mutation likely underlies isolated foveal hypoplasia.


Brain | 2017

SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome

Yonatan Perez; Zamir Shorer; Keren Liani-Leibson; Pauline Chabosseau; Rotem Kadir; Michael Volodarsky; Daniel Halperin; Shiran Barber-Zucker; Hanna Shalev; Ruth Schreiber; Libe Gradstein; Evgenia Gurevich; Raz Zarivach; Guy A. Rutter; Daniel Landau; Ohad S. Birk

Few cerebro-renal syndromes have been described to date. Perez et al. identify a novel autosomal recessive cerebro-renal syndrome in a consanguineous Bedouin kindred, caused by a mutation in SLC30A9. The mutation disrupts the role of SLC30A9 in Zn2+ transport, leading to impaired regulation of cytosolic zinc homeostasis.


PLOS Genetics | 2016

ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size

Rotem Kadir; Tamar Harel; Barak Markus; Yonatan Perez; Idan Cohen; Michael Volodarsky; Miora Feintsein-Linial; Elana Chervinski; Joël Zlotogora; Sara Sivan; Ramon Y. Birnbaum; Uri Abdu; Stavit A. Shalev; Ohad S. Birk

Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.


PLOS ONE | 2012

Localization of the Drosophila Rad9 Protein to the Nuclear Membrane Is Regulated by the C-Terminal Region and Is Affected in the Meiotic Checkpoint

Rotem Kadir; Ronit Tokarsky; Uri Abdu

Rad9, Rad1, and Hus1 (9-1-1) are part of the DNA integrity checkpoint control system. It was shown previously that the C-terminal end of the human Rad9 protein, which contains a nuclear localization sequence (NLS) nearby, is critical for the nuclear transport of Rad1 and Hus1. In this study, we show that in Drosophila, Hus1 is found in the cytoplasm, Rad1 is found throughout the entire cell and that Rad9 (DmRad9) is a nuclear protein. More specifically, DmRad9 exists in two alternatively spliced forms, DmRad9A and DmRad9B, where DmRad9B is localized at the cell nucleus, and DmRad9A is found on the nuclear membrane both in Drosophila tissues and also when expressed in mammalian cells. Whereas both alternatively spliced forms of DmRad9 contain a common NLS near the C terminus, the 32 C-terminal residues of DmRad9A, specific to this alternative splice form, are required for targeting the protein to the nuclear membrane. We further show that activation of a meiotic checkpoint by a DNA repair gene defect but not defects in the anchoring of meiotic chromosomes to the oocyte nuclear envelope upon ectopic expression of non-phosphorylatable Barrier to Autointegration Factor (BAF) dramatically affects DmRad9A localization. Thus, by studying the localization pattern of DmRad9, our study reveals that the DmRad9A C-terminal region targets the protein to the nuclear membrane, where it might play a role in response to the activation of the meiotic checkpoint.


Human Molecular Genetics | 2015

CDC174, a novel component of the exon junction complex whose mutation underlies a syndrome of hypotonia and psychomotor developmental delay

Michael Volodarsky; Hava Lichtig; Tom Leibson; Yair Sadaka; Rotem Kadir; Yonatan Perez; Keren Liani-Leibson; Libe Gradstein; Ruthy Shaco-Levy; Zamir Shorer; Dale Frank; Ohad S. Birk

Siblings of non-consanguineous Jewish-Ethiopian ancestry presented with congenital axial hypotonia, weakness of the abducens nerve, psychomotor developmental delay with brain ventriculomegaly, variable thinning of corpus callosum and cardiac septal defects. Homozygosity mapping identified a single disease-associated locus of 3.5 Mb on chromosome 3. Studies of a Bedouin consanguineous kindred affected with a similar recessive phenotype identified a single disease-associated 18 Mb homozygosity locus encompassing the entire 3.5 Mb locus. Whole exome sequencing demonstrated only two homozygous mutations within a shared identical haplotype of 0.6 Mb, common to both Bedouin and Ethiopian affected individuals, suggesting an ancient common founder. Only one of the mutations segregated as expected in both kindreds and was not found in Bedouin and Jewish-Ethiopian controls: c.1404A>G, p.[*468Trpext*6] in CCDC174. We showed that CCDC174 is ubiquitous, restricted to the cell nucleus and co-localized with EIF4A3. In fact, yeast-two-hybrid assay demonstrated interaction of CCDC174 with EIF4A3, a component of exon junction complex. Knockdown of the CCDC174 ortholog in Xenopus laevis embryos resulted in poor neural fold closure at the neurula stage with later embryonic lethality. Knockdown embryos exhibited a sharp reduction in expression of n-tubulin, a marker for differentiating primary neurons, and of hindbrain markers krox20 and hoxb3. The Xenopus phenotype could be rescued by the human normal, yet not the mutant CCDC174 transcripts. Moreover, overexpression of mutant but not normal CCDC174 in neuroblastoma cells caused rapid apoptosis. In line with the hypotonia phenotype, the CCDC174 mutation caused depletion of RYR1 and marked myopathic changes in skeletal muscle of affected individuals.


European Journal of Human Genetics | 2017

Progressive hereditary spastic paraplegia caused by a homozygous KY mutation

Yuval Yogev; Yonatan Perez; Iris Noyman; Anwar Abu Madegem; Hagit Flusser; Zamir Shorer; Eugene Cohen; Leonid Kachko; Analia Michaelovsky; Ruth Birk; Arie Koifman; Max Drabkin; Ohad Wormser; Daniel Halperin; Rotem Kadir; Ohad S. Birk

Twelve individuals of consanguineous Bedouin kindred presented with autosomal recessive progressive spastic paraplegia evident as of age 0–24 months, with spasticity of lower limbs, hyperreflexia, toe walking and equinus deformity. Kyphoscolisois was evident in older patients. Most had atrophy of the lateral aspects of the tongue and few had intellectual disability. Nerve conduction velocity, electromyography and head and spinal cord magnetic resonance imaging were normal in tested subjects. Muscle biopsy showed occasional central nuclei and fiber size variability with small angular fibers. Genome-wide linkage analysis identified a 6.7Mbp disease-associated locus on chromosome 3q21.3–3q22.2 (LOD score 9.02; D3S1290). Whole-exome sequencing identified a single homozygous variant within this locus, c.51_52ins(28); p.(V18fs56*) in KY, segregating in the family as expected and not found in 190 Bedouin controls. High KY transcript levels were demonstrated in muscular organs with lower expression in the CNS. The phenotype is reminiscent of kyphoscoliosis seen in Ky null mice. Two recent studies done independently and parallel to ours describe somewhat similar phenotypes in one and two patients with KY mutations. KY encodes a tranglutaminase-like peptidase, which interacts with muscle cytoskeletal proteins and is part of a Z-band protein complex, suggesting the disease mechanism may resemble myofibrillar myopathy. However, the mixed myopathic–neurologic features caused by human and mouse Ky mutations are difficult to explain by loss of KY sarcomere stabilizing function alone. KY transcription in CNS tissues may imply that it also has a role in neuromotor function, in line with the irregularity of neuromuscular junction in Ky null mutant mice.


Clinical Genetics | 2018

Novel SBF1 splice-site null mutation broadens the clinical spectrum of Charcot-Marie-Tooth type 4B3 disease

Hagit Flusser; Daniel Halperin; Rotem Kadir; Zamir Shorer; Ilan Shelef; Ohad S. Birk

Four siblings of consanguineous Bedouin kindred presented at infancy with an autosomal recessive syndrome of congenital microcephaly, facial dysmorphism, strabismus, developmental delay and ataxia with positive pyramidal signs. Toward the end of their first decade, they developed areflexia, multiple cranial neuropathies and severe polyneuropathy with progressive muscle weakness, affecting proximal and distal extremities. Physical assessment exhibited kyphoscoliosis, bilateral syndactyly and distal muscle wasting with drop‐foot and pes cavus. Magnetic resonance imaging (MRI) showed profound cerebellar atrophy with highly unique findings at the pontine and mesencephalic levels, previously described as “fork and bracket” signs. Genome‐wide linkage analysis identified a single ~1.5 Mbp disease‐associated locus on chromosome 22q13.33. Whole exome sequencing identified a single novel homozygous deleterious splice‐site mutation within this locus in SET binding factor 1 (SBF1). SBF1 missense mutations were shown to underlie Charcot‐Marie‐Tooth (CMT) type 4B3 disease, a rare autosomal recessive subtype of CMT4. The novel SBF1 null mutation highlights distinct severe phenotypic manifestations, broadening the clinical spectrum of SBF1‐related neuropathies: cerebellar and pyramidal signs evident in the first months of life with peripheral polyneuropathy emerging only toward the end of the first decade, together with unique MRI findings.


American Journal of Medical Genetics Part A | 2018

A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: Possible phenotypic expansion

Idan Cohen; Orna Staretz-Chacham; Ohad Wormser; Yonatan Perez; Ann Saada; Rotem Kadir; Ohad S. Birk

SLC25A1 mutations are associated with combined D,L‐2‐hydroxyglutaric aciduria (DL‐ 2HGA; OMIM #615182), characterized by muscular hypotonia, severe neurodevelopmental dysfunction and intractable seizures. SLC25A1 encodes the mitochondrial citrate carrier (CIC), which mediates efflux of the mitochondrial tricarboxylic acid (TCA) cycle intermediates citrate and isocitrate in exchange for cytosolic malate. Only a single family with an SLC25A1 mutation has been described in which mitochondrial respiratory chain dysfunction was documented, specifically in complex IV. Five infants of two consanguineous Bedouin families of the same tribe presented with small head circumference and neonatal‐onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development culminating in early death. Ventricular septal defects (VSD) were demonstrated in three patients. Blood and CSF lactate were elevated with normal levels of plasma amino acids and free carnitine and increased 2‐OH‐glutaric acid urinary exertion. EEG was compatible with white matter disorder. Brain MRI revealed ventriculomegaly, thin corpus callosum with increased lactate peak on spectroscopy. Mitochondrial complex V deficiency was demonstrated in skeletal muscle biopsy of one infant. Homozygosity mapping and sequencing ruled out homozygosity of affected individuals in all known complex V‐associated genes. Whole exome sequencing identified a novel homozygous SLC25A1 c.713A>G (p.Asn238Ser) mutation, segregating as expected in the affected kindred and not found in 220 control alleles. Thus, SLC25A1 mutations might be associated with mitochondrial complex V deficiency and should be considered in the differential diagnosis of mitochondrial respiratory chain defects.

Collaboration


Dive into the Rotem Kadir's collaboration.

Top Co-Authors

Avatar

Ohad S. Birk

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yonatan Perez

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Zamir Shorer

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Hagit Flusser

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Michael Volodarsky

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Idan Cohen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Libe Gradstein

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Daniel Halperin

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Sara Sivan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Iris Noyman

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge