Rouhollah Jalili
University of Wollongong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rouhollah Jalili.
Scientific Reports | 2013
Rouhollah Jalili; Joselito M. Razal; Gordon G. Wallace
With the aim of fabricating multifunctional fibers with enhanced mechanical properties, electrical conductivity and electrochemical performance, we develop wet-spinning of composite formulation based on functionalized PEG-SWNT and PEDOT:PSS. The method of addition and loading are directly correlated to the quality and the ease of spinnability of the formulation and to the mechanical and electrical properties of the resultant fibers. Both the fiber modulus (Y) and strength (σ) scaled linearly with PEG-SWNT volume fraction (Vf). A remarkable reinforcement rate of dY/dVf = 417 GPa and dσ/dVf = 4 GPa were obtained when PEG-SWNTs at Vf ≤ 0.02. Further increase of PEG-SWNTs loading (i.e. up to Vf 0.12) resulted in further enhancements up to 22.8 GPa and 254 MPa in Modulus and ultimate stress, respectively. We also show the enhancement of electrochemical supercapacitor performance of composite fibers. These outstanding mechanical, electrical and electrochemical performances place these fibers among the best performing multifunctional composite fibers.
ACS Nano | 2014
Seyed Hamed Aboutalebi; Rouhollah Jalili; Dorna Esrafilzadeh; Maryam Salari; Zahra Gholamvand; Sima Aminorroaya Yamini; Konstantin Konstantinov; Roderick Shepherd; Jun Chen; Simon E. Moulton; Peter C. Innis; Andrew I. Minett; Joselito M. Razal; Gordon G. Wallace
The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Youngs modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.
Scientific Reports | 2015
Yuqing Liu; Bo Weng; Joselito M. Razal; Qun Xu; Chen Zhao; Yuyang Hou; Shayan Seyedin; Rouhollah Jalili; Gordon G. Wallace; Jun Chen
Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm−2 was achieved at a scan rate of 10 mV s−1 using the composite electrode with a high mass loading (8.49 mg cm−2), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.
Advanced Materials | 2013
Mark S. Romano; Na Li; Dennis Antiohos; Joselito M. Razal; Andrew Nattestad; Stephen Beirne; Shaoli Fang; Yongsheng Chen; Rouhollah Jalili; Gordon G. Wallace; Ray H. Baughman; Jun Chen
By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.
Materials horizons | 2014
Rouhollah Jalili; Seyed Hamed Aboutalebi; Dorna Esrafilzadeh; Konstantin Konstantinov; Joselito M. Razal; Simon E. Moulton; Gordon G. Wallace
Rational control over the formation and processability, and consequently final properties of graphene oxide liquid crystalline dispersions has been a long-standing goal in the development of bottom-up device fabrication processes. Here we report, the principal conditions through which such levels of control can be exercised to fine-tune dispersion properties for further processing.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Philippe Poulin; Rouhollah Jalili; Wilfred Neri; Frédéric Nallet; Thibaut Divoux; Annie Colin; Seyed Hamed Aboutalebi; Gordon G. Wallace; Cécile Zakri
Significance Bending of a thin plate simultaneously involves contraction and stretching of matter relative to a neutral plane, and tensile rigidity dictates the ability of a thin platelet to be bent. If graphene or graphene oxide (GO) were actually behaving as thin platelets, they would display high bending rigidity. Bending measurements for atomic monolayers remain particularly challenging because of their difficult manipulation. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. Amazingly, the high stiffness of GO is associated with an unexpected low bending modulus. Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young’s modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.
Chemistry: A European Journal | 2016
Jaecheol Choi; Tania M. Benedetti; Rouhollah Jalili; Ashley Walker; Gordon G. Wallace; David L. Officer
The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe(0) TPP](2-) homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co-catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four-fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid.
RSC Advances | 2015
Tom Dyer; Ngamta Thamwattana; Rouhollah Jalili
In this paper, we construct a continuum model for graphene oxide based upon the Lerf–Klinowski structure to investigate the interaction forces between sheets of graphene oxide. We use the Lennard-Jones potential and coulombic potential to determine the total potential energy between sheets of graphene oxide. We analytically calculate the interaction forces within the system using sums of hypergeometric functions. Our model is then modified to investigate different levels of hydration and oxidation within the system. Our investigations are reconstructed using the LAMMPS molecular dynamics simulator and we find that the analytical solution quickly and effectively calculates results that match well against our simulation data and values taken from literature.
Advanced Functional Materials | 2011
Rouhollah Jalili; Joselito M. Razal; Peter C. Innis; Gordon G. Wallace
Advanced Functional Materials | 2017
Yunfeng Chao; Rouhollah Jalili; Yu Ge; Caiyun Wang; Tian Zheng; Kewei Shu; Gordon G. Wallace