Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roumen Balansky is active.

Publication


Featured researches published by Roumen Balansky.


Mutation Research | 2013

Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice.

Roumen Balansky; Mariagrazia Longobardi; Gancho Ganchev; Marietta Iltcheva; N.N. Nedyalkov; Petar A. Atanasov; Reneta Toshkova; Silvio De Flora; Alberto Izzotti

The broad application of nanotechnology in medicine, biology, and pharmacology is leading to a dramatic increase of the risk of direct contact of nanoproducts, among which gold nanoparticles (AuNP), with the human organism. The present study aimed at evaluating in vivo the genotoxicity of AuNPs with average size of 40 nm and 100 nm. A single intraperitoneal treatment of adult male and female Swiss mice (strain H) with AuNPs, at a dose of 3.3 mg/kg body weight, had no effect on the frequency of micronucleated polychromatic erythrocytes (MN PCEs) in bone marrow. Conversely, the transplacental treatment with AuNP-100 nm, but not with AuNP-40 nm, applied intraperitoneally at a dose of 3.3 mg/kg to pregnant mice on days 10, 12, 14, and 17 of gestation, resulted in a significant increase in the frequency of MN PCEs in both liver and peripheral blood of mouse fetuses. In parallel, the same treatment with AuNP-100 nm, but not with AuNP-40 nm, produced significant changes in microRNA expression. In particular, out of 1281 mouse microRNAs analyzed, 28 were dys-regulated more than two-fold and to a statistically significant extent in fetus lung, and 5 were up-regulated in fetal liver. Let-7a and miR-183 were significantly up-regulated in both organs. The data presented herein demonstrate for the first time the transplacental size-dependent clastogenic and epigenetic effects of AuNPs in mouse fetus, thus highlighting new aspects concerning the putative genotoxicity of AuNPs during a vulnerable period of life.


Mutation Research\/reviews in Genetic Toxicology | 1996

DNA adducts and chronic degenerative diseases. Pathogenetic relevance and implications in preventive medicine

Silvio De Flora; Alberto Izzotti; Kurt Randerath; Erika Randerath; Helmut Bartsch; Jagadeesan Nair; Roumen Balansky; Frederik-Jan van Schooten; Paolo Degan; Gilberto Fronza; Debra Walsh; Joellen Lewtas

Chronic degenerative diseases are the leading causes of death in developed countries. Their control is exceedingly difficult due to their multiplicity and diversity, the interconnection with a network of multiple risk factors and protective factors, the long latency and multistep pathogenesis, and the multifocal localization. Adducts to nuclear DNA are biomarkers evaluating the biologically effective dose, reflecting an enhanced risk of developing a mutation-related disease more realistically than the external exposure dose. The localization and accumulation of these promutagenic lesions in different organs are the composite result of several factors, including (a) toxicokinetics (first-pass effect); (b) local and distant metabolism; (c) efficiency and fidelity of DNA repair; and (d) cell proliferation rate. The last factor will affect not only the dilution of DNA adducts but also the possible evolution towards either destructive processes, such as emphysema or cardiomyopathies, or proliferative processes, such as benign or malignant tumors at various sites. They also include heart tumors affecting fetal myocytes after transplacental exposure to DNA-binding agents, blood vessel tumors, and atherosclerotic plaques. In this article, particular emphasis is given to molecular alterations in the heart, which is the preferential target for the formation of DNA adducts in smokers, and in human aorta, where an extensive molecular epidemiology project is documenting the systematic presence of adducts to the nuclear DNA of smooth muscle cells from atherosclerotic lesions, and their significant correlation with known atherogenic risk factors. Exocyclic DNA adducts resulting from lipid peroxidation, and age-related indigenous adducts (I-compounds) may also originate from endogenous sources, chronic infections and infestations, and inflammatory processes. Type II I-compounds are bulky DNA lesions resulting from oxidative stress, whereas type II-compounds are presumably normal DNA modifications, which display positive correlations with median life span and are decreased in cancer and other pathological conditions. Profiles of type II-compounds strongly depend on diet and are related to the antidegenerative effects of caloric/ dietary restriction. Even broader is the possible meaning of adducts to mitochondrial DNA, which have been detected in rodents exposed to genotoxic agents and complex mixtures, as well as in untreated rodents, in larger amounts when compared to the nuclear DNA of the same cells. Mutations in mitochondrial DNA increase the number of oxidative phosphorylation-defective cells, especially in energy-requiring postmitotic tissues such as brain, heart and skeletal muscle, thereby playing an important role in aging and a variety of chronic degenerative diseases. A decreased formation of DNA adducts is an indicator of reduced risk of developing the associated disease. Therefore, these molecular dosimeters can be used as biomarkers in the prevention of chronic degenerative diseases, pursued either by avoiding exposure to adduct-forming agents or by using chemopreventive agents. Interventions addressed to the human organism by means of dietary measures or pharmacological agents have encountered a broad consensus in the area of cardiovascular diseases, and are deserving a growing interest also in cancer prevention. The efficacy of chemopreventive agents can be assessed by evaluating inhibition of nuclear DNA or mitochondrial DNA adduct formation in vitro, in animal models, and in phase II clinical trials in high-risk individuals.


Mutation Research | 2001

Multiple points of intervention in the prevention of cancer and other mutation-related diseases

Silvio De Flora; Alberto Izzotti; Francesco D’Agostini; Roumen Balansky; Douglas M. Noonan; Adriana Albini

Multiple points of intervention are the target for dietary and pharmacological interventions aimed at preventing cancer and other diseases in which mutations in somatic cells play a pathogenetic role. For instance, our studies showed that DNA adducts can be consistently detected in arterial smooth muscle cells from human atherosclerotic lesions. Their levels were significantly correlated with the occurrence of atherogenic risk factors known from traditional epidemiology and were strikingly enhanced in atherosclerotic patients lacking the GSTM1 genotype. Cancer chemoprevention has a dual goal, i.e. prevention of occurrence of the disease (primary prevention) and early detection and reversion of tumors at a premalignant stage (secondary prevention). At a later stage, attempts can be made to prevent local recurrences as well as invasion and metastasis of malignant cells (tertiary prevention). For a rational use of chemopreventive agents it is essential not only to evaluate their efficacy and safety but also to understand the mechanisms involved. Sometimes it is difficult to discriminate whether modulation of a given end-point is actually a specific mechanism or rather the epiphenomenon of other events. For instance, we recently found that apoptosis is considerably stimulated in the respiratory tract of smoke-exposed rats; whereas certain chemopreventive agents work by further enhancing smoke-related apoptosis, other agents appear to downregulate apoptosis simply because they inhibit the genotoxic events signaling this process. We propose here a detailed, updated classification of the points of intervention exploitable in the prevention of mutation and cancer. The general outline includes a variety of extracellular and cellular mechanisms modulating the genotoxic response and tumor initiation as well as tumor promotion, progression, angiogenesis, invasion, and metastasis. This classification is not intended to provide a rigid scheme, since several intervention points are reiterated several times over different phases of the process. Moreover, some mechanisms are strictly interconnected or partially overlapping. Interestingly, a number of chemopreventive agents work through multiple mechanisms, which warrants a higher efficacy and a broader spectrum of action. It is also convenient to combine chemopreventive agents working through complementary mechanisms. In recent preclinical studies, we observed that combination of N-acetylcysteine with either oltipraz or ascorbic acid produces additive or more than additive protective effects towards early biomarkers and/or experimentally-induced tumors.


The FASEB Journal | 2003

Genomic and transcriptional alterations in mouse fetus liver after transplacental exposure to cigarette smoke

Alberto Izzotti; Roumen Balansky; Cristina Cartiglia; Anna Camoirano; Mariagrazia Longobardi; Silvio De Flora

The transplacental exposure of fetuses to maternal cigarette smoke may increase the risk of developmental impairments, congenital diseases, and childhood cancer. The whole‐body exposure of Swiss mice to environmental cigarette smoke (ECS) during pregnancy decreased the number of fetuses per dam, placenta weight, and fetus weight. ECS increased DNA adducts, oxidative nucleotide alterations, and cytogenetic damage in fetus liver. Evaluation by cDNA array of 746 genes showed that 61 of them were expressed in fetus liver under basal conditions. The oral administration of N‐acetylcysteine (NAC) during pregnancy enhanced the expression of three genes only, including two glutathione S‐transferases and α1‐antitrypsin precursor, whose deficiency plays a pathogenetic role in congenital emphysema. Transplacental ECS upregulated the expression of 116 genes involved in metabolism, response to oxidative stress, DNA and protein repair, and signal transduction. NAC inhibited the ECS‐related genetic damage and upregulation of most genes. ECS stimulated pro‐apoptotic genes and genes downregulating the cell cycle, which may justify growth impairments in the developing fetus. Thus, both genetic and epigenetic mechanisms were modulated by ECS. Moreover, hypoxia‐related genes and several oncogenes and receptors involved in proliferation and differentiation of leukocytes were induced in the fetal liver, which also bears hematopoietic functions.


The FASEB Journal | 2004

Alterations of gene expression in skin and lung of mice exposed to light and cigarette smoke

Alberto Izzotti; Cristina Cartiglia; Mariagrazia Longobardi; Roumen Balansky; Francesco D’Agostini; Ronald A. Lubet; Silvio De Flora

We previously showed that sunlight‐mimicking light induces genotoxic damage not only in skin but also even in lung, bone marrow, and peripheral blood of hairless mice. Moreover, light and smoke acted synergically in the respiratory tract. To clarify the mechanisms involved, we investigated by cDNA‐arrays the expression of 746 toxicologically relevant genes in skin and lungs of mice exposed for 28 days to light and/or environmental cigarette smoke. Glutathione‐S–transferase‐Pi and catalase were overexpressed in the lungs of mice exposed to light only. Moreover, the light induced in skin the expression of genes involved in carcinogenesis, photoaging, and production of genotoxic and oxidizing derivatives traveling at a distance. Smoke induced the expression of multiple genes in both skin and lung, which reflect adaptive responses and mechanisms related to cancer and, possibly, to emphysema and stroke. As shown in mice exposed to both light and smoke, the light tended to increase smoke‐induced gene expression in lungs, while smoke tended to attenuate light‐induced gene expression in skin. The oral administration of the nonsteroidal anti‐inflammatory drug sulindac inhibited the light‐induced overexpression of cyclooxygenase‐2 and oxidative stress‐related genes in skin, and down‐regulated smoke‐induced genes involved in oxidative stress, removal of damaged proteins, inflammation, and immune response in lung. These results provide a mechanistic insight explaining the systemic alterations induced by both light and smoke in mouse skin and lungs.


Mutation Research | 2003

Modulation of cigarette smoke-related end-points in mutagenesis and carcinogenesis.

Silvio De Flora; Francesco D’Agostini; Roumen Balansky; Anna Camoirano; Carlo Bennicelli; Maria Bagnasco; Cristina Cartiglia; Elena Tampa; Maria Grazia Longobardi; Ronald A. Lubet; Alberto Izzotti

The epidemic of lung cancer and the increase of other tumours and chronic degenerative diseases associated with tobacco smoking have represented one of the most dramatic catastrophes of the 20th century. The control of this plague is one of the major challenges of preventive medicine for the next decades. The imperative goal is to refrain from smoking. However, chemoprevention by dietary and/or pharmacological agents provides a complementary strategy, which can be targeted not only to current smokers but also to former smokers and passive smokers. This article summarises the results of studies performed in our laboratories during the last 10 years, and provides new data generated in vitro, in experimental animals and in humans. We compared the ability of 63 putative chemopreventive agents to inhibit the bacterial mutagenicity of mainstream cigarette smoke. Modulation by ethanol and the mechanisms involved were also investigated both in vitro and in vivo. Several studies evaluated the effects of dietary chemopreventive agents towards smoke-related intermediate biomarkers in various cells, tissues and organs of rodents. The investigated end-points included metabolic parameters, adducts to haemoglobin, bulky adducts to nuclear DNA, oxidative DNA damage, adducts to mitochondrial DNA, apoptosis, cytogenetic damage in alveolar macrophages, bone marrow and peripheral blood erytrocytes, proliferation markers, and histopathological alterations. The agents tested in vivo included N-acetyl-L-cysteine, 1,2-dithiole-3-thione, oltipraz, phenethyl isothiocyanate, 5,6-benzoflavone, and sulindac. We started applying multigene expression analysis to chemoprevention research, and postulated that an optimal agent should not excessively alter per se the physiological background of gene expression but should be able to attenuate the alterations produced by cigarette smoke or other carcinogens. We are working to develop an animal model for the induction of lung tumours following exposure to cigarette smoke. The most encouraging results were so far obtained in models using A/J mice and Swiss albino mice. The same smoke-related biomarkers used in animal studies can conveniently be applied to human chemoprevention studies. We participated in trials evaluating the effects of N-acetyl-L-cysteine and oltipraz in smokers from Italy, The Netherlands, and the Peoples Republic of China. We are trying to develop a pharmacogenomic approach, e.g. based on genetic metabolic polymorphisms, aimed at predicting not only the risk of developing cancer but also the individual responsiveness to chemopreventive agents.


International Journal of Cancer | 2009

Prevention of cigarette smoke–induced lung tumors in mice by budesonide, phenethyl isothiocyanate, and N‐acetylcysteine

Roumen Balansky; Gancho Ganchev; Marietta Iltcheva; Vernon E. Steele; Silvio De Flora

Lung cancer is the most important cause of death among neoplastic diseases worldwide, and cigarette smoke (CS) is the major risk factor for cancer. Complementarily to avoidance of exposure to CS, chemoprevention will lower the risk of cancer in passive smokers, ex‐smokers, and addicted current smokers who fail to quit smoking. Unfortunately, chemoprevention clinical trials have produced disappointing results to date and, until recently, a suitable animal model evaluating CS carcinogenicity was not available. We previously demonstrated that mainstream CS induces a potent carcinogenic response when exposure of mice starts at birth. In the present study, neonatal mice (strain H) were exposed to CS for 120 consecutive days, starting at birth. The chemopreventive agents budesonide (2.4 mg/kg diet), phenethyl isothiocyanate (PEITC, 1,000 mg/kg diet), and N‐acetyl‐L‐cysteine (NAC, 1,000 mg/kg body weight) were administered orally according to various protocols. The experiment was stopped after 210 days. Exposure to CS resulted in a high incidence and multiplicity of benign lung tumors and in significant increases of malignant lung tumors and other histopathological alterations. All three chemopreventive agents, administered to current smokers after weaning, were quite effective in protecting both male and female mice from CS pulmonary carcinogenicity. When given to ex‐smokers after withdrawal of exposure to CS, the protective capacity of budesonide was unchanged, while PEITC lost part of its cancer chemopreventive activity. In conclusion, the proposed experimental model provides convincing evidence that it is possible to prevent CS‐induced lung cancer by means of dietary and pharmacological agents.


Mutation Research | 1992

Modulation of the mutagenic response in prokaryotes

Silvio De Flora; Anna Camoirano; Francesco D'Agostini; Roumen Balansky

Short-term tests investigating genetic end-points in prokaryotes have been extensively used worldwide not only for risk assessment purposes but also for evaluating the modulation of the mutagenic response. In spite of some intrinsic limitations, such as the lack of cell compartmentalization or the need for an exogenous metabolic system working extracellularly, experimental systems in bacteria can provide useful preliminary indications and some information on the mechanisms involved. In the large majority of studies the putative modulator is mixed with a known mutagen and then assayed in target bacteria, with suitable controls. However, under natural conditions exposure of target cells to modulators may either precede, co-exist with, or follow exposure to mutagens. Therefore, a variety of methodological variations, involving pre-treatment, co-treatment, or post-treatment of bacteria with the putative modulator, have been designed. Application of these procedures showed that the effects of modulators can be completely upset, from inhibition to enhancement, or vice versa, by changing the experimental conditions. Use of methodological variations may provide more complete information on the spectrum of possible effects in bacteria as well as a better insight into modulation mechanisms. Several examples illustrating the flexibility of the Salmonella test in this field of research are available. On the other hand, the widespread use of these relatively simple techniques, yet requiring skillfulness and experience, may lead to some misuse or oversimplifications. A rather common inadequacy is to use excessive amounts of test mutagens, or to express the results in terms of revertants/survivors, rather than revertants/plate. In fact, in the Salmonella test the number of revertants is rather unrelated to the initial number of plated bacteria, provided a normal background lawn of bacterial growth is formed. Thus, a 50% killing of bacteria will not appreciably influence the number of revertants/plate, but expressed as revertants/survivors the effect will look twice as large.


The FASEB Journal | 1998

DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion

Alberto Izzotti; Roumen Balansky; Penka M. Blagoeva; Zvetanka I. Mircheva; Lucia Tulimiero; Cristina Cartiglia; Silvio De Flora

In spite of the epidemiological evidence supporting a synergism between alcohol consumption and cigarette smoking in the pathogenesis of cancers of the aerodigestive tract, there is a paucity of experimental studies evaluating the effects of these agents under well‐controlled conditions and exploring the mechanisms involved. We exposed groups of female BD6 rats, aged 8 months, to ethanol (5% in drinking water for 8 consecutive months) and/or whole‐body to mainstream cigarette smoke (1 h/day, 5 days/week for 8 months). DNA was purified from different organs and analyzed for the presence of DNA‐protein crosslinks and 32P‐postlabeled DNA adducts after butanol enrichment. No significant increase of DNA‐protein crosslinks, compared to untreated controls, was induced by any treatment in liver, lung, or heart. ‘Spontaneous’ nucleotidic modifications were detected by 32P‐postlabeling in organs of untreated rats, with the highest levels occurring in the heart. Ingestion of ethanol did not affect DNA adduct levels in any of the organs examined: esophagus, liver, lung, and heart. Exposure to cigarette smoke induced formation of DNA adducts in the lung and heart, but not in the esophagus or liver. The combined ingestion of ethanol resulted in a significant formation of smoke‐related DNA adducts in the esophagus and in their further, dramatic increase in the heart. It thus appears that ethanol consumption increases the bioavailability of DNA binding smoke components in the upper digestive tract and favors their systemic distribution. The mechanisms responsible for the interaction between ethanol and smoke and for the selective localization of DNA alterations in different organs are discussed. Formation of DNA adducts in the organs examined may be relevant in the pathogenesis of lung and esophageal cancers as well as in the pathogenesis of other types of chronic degenerative diseases, such as chronic obstructive pulmonary diseases and cardiomyopathies.—Izzotti A., Balansky R. M., Blagoeva P. M., Mircheva, Z. I., Tulimiero L., Cartiglia, C., De Flora, S. DNA alterations in rat organs after chronic exposure to cigarette smoke and/or ethanol ingestion. FASEB J. 12, 753–758 (1998)


Mutation Research\/genetic Toxicology | 1987

Investigation of the mutagenic activity of tobacco smoke

Roumen Balansky; Penka M. Blagoeva; Zvetanka I. Mircheva

The genotoxic effect of whole tobacco smoke was studied employing the Salmonella/microsome mutagenicity assay, the micronucleus test in mouse bone marrow and UDS in peripheral human lymphocytes. It was established that tobacco smoke (120-480 cm3 in a 16-1 glass chamber, at 1-10 min exposure time) induced a 3-9-fold increase of spontaneous his+ reversion mutation rate in S. typhimurium TA98, but not in strains TA97a, TA100 and TA102. Addition of S9 mix obtained from the liver of Aroclor 1254-treated rats was necessary to reveal the mutagenic activity of tobacco smoke. Treatment of BDF1 mice placed in a 14-1 glass chamber with tobacco smoke (600 cm3 smoke, 2 exposures of 30 min each, with a 1-min interval between them) caused a 2-fold dose-dependent elevation of the number of micronucleated PCE in bone marrow. No cumulative effect was detected when mice were treated with tobacco smoke during 2-28 consecutive days. The effect observed 24 h after tobacco-smoke exposure was abolished 48 h later. Tobacco smoke (180 or 360 cm3) passed through the culture medium (with or without S9 mix) of human peripheral lymphocytes (the cells were then incubated for 60 min at 37 degrees C) did not increase the spontaneous rate of UDS. Both the Salmonella/microsome mutagenicity assay employing S. typhimurium TA98 strain and the micronucleus test in mouse bone marrow might be useful in studying tobacco smoke-induced mutagenesis.

Collaboration


Dive into the Roumen Balansky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vernon E. Steele

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge