Rowan Leary
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rowan Leary.
Nature | 2013
Olivia Nicoletti; Francisco de la Peña; Rowan Leary; Daniel J. Holland; Caterina Ducati; Paul A. Midgley
The remarkable optical properties of metal nanoparticles are governed by the excitation of localized surface plasmon resonances (LSPRs). The sensitivity of each LSPR mode, whose spatial distribution and resonant energy depend on the nanoparticle structure, composition and environment, has given rise to many potential photonic, optoelectronic, catalytic, photovoltaic, and gas- and bio-sensing applications. However, the precise interplay between the three-dimensional (3D) nanoparticle structure and the LSPRs is not always fully understood and a spectrally sensitive 3D imaging technique is needed to visualize the excitation on the nanometre scale. Here we show that 3D images related to LSPRs of an individual silver nanocube can be reconstructed through the application of electron energy-loss spectrum imaging, mapping the excitation across a range of orientations, with a novel combination of non-negative matrix factorization, compressed sensing and electron tomography. Our results extend the idea of substrate-mediated hybridization of dipolar and quadrupolar modes predicted by theory, simulations, and electron and optical spectroscopy, and provide experimental evidence of higher-energy mode hybridization. This work represents an advance both in the understanding of the optical response of noble-metal nanoparticles and in the probing, analysis and visualization of LSPRs.
Ultramicroscopy | 2013
Rowan Leary; Zineb Saghi; Paul A. Midgley; Daniel J. Holland
The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS-ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS-ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data.
Nano Letters | 2011
Zineb Saghi; Daniel J. Holland; Rowan Leary; Andrea Falqui; Giovanni Bertoni; Andrew J. Sederman; Lynn F. Gladden; Paul A. Midgley
In this paper, we apply electron tomography (ET) to the study of the three-dimensional (3D) morphology of iron oxide nanoparticles (NPs) with reactive concave surfaces. The ability to determine quantitatively the volume and shape of the NP concavity is essential for understanding the key-lock mechanism responsible for the destabilization of gold nanocrystals within the iron oxide NP concavity. We show that quantitative ET is enhanced greatly by the application of compressed sensing (CS) techniques to the tomographic reconstruction. High-fidelity tomograms using a new CS-ET algorithm reveal with clarity the concavities of the particle and enable 3D nanometrology studies to be undertaken with confidence. In addition, the robust performance of the CS-ET algorithm with undersampled data should allow rapid progress with time-resolved 3D nanoscale studies, 3D atomic resolution imaging, and cryo-tomography of nanoscale cellular structures.
ACS Nano | 2016
Zupeng Chen; Sergey Pronkin; Tim-Patrick Fellinger; Kamalakannan Kailasam; Gianvito Vilé; Davide Albani; Frank Krumeich; Rowan Leary; Jon S. Barnard; John Meurig Thomas; Javier Pérez-Ramírez; Markus Antonietti; Dariya Dontsova
Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne.
ACS Nano | 2017
Panagiotis Karagiannidis; Stephen A. Hodge; Lucia Lombardi; Flavia Tomarchio; Nicolas Decorde; Silvia Milana; Ilya Goykhman; Yang Su; Steven V. Mesite; Duncan N. Johnstone; Rowan Leary; Paul A. Midgley; Nicola Pugno; Felice Torrisi; A. C. Ferrari
We report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 108 s–1] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below ∼2Ω/□. This is a simple and scalable production route for conductive inks for large-area printing in flexible electronics.
Journal of Colloid and Interface Science | 2013
John Meurig Thomas; Rowan Leary; Paul A. Midgley; Daniel J. Holland
The principal purpose of this contribution is to illustrate the potential of compressed sensing electron tomography for the characterisation of nanoparticulate materials that are vulnerable to electron beam damage. Not only is there growing interest in nanoparticles of organic materials in medical and allied contexts, there is also the need to investigate nanoparticles and nanoclusters of metals supported on biological macromolecular entities in the context of drug delivery. A qualitative account of the principles of electron tomography is outlined with illustrations from the field of heterogeneous catalysis, where electron beam damage is less of an issue, and an appendix deals with more quantitative aspects of how compressed sensing promises to expand the range of samples that have hitherto been accessible to investigation.
Ultramicroscopy | 2016
Zineb Saghi; Giorgio Divitini; Benjamin Winter; Rowan Leary; Erdmann Spiecker; Caterina Ducati; Paul A. Midgley
Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques.
Chemcatchem | 2013
John Meurig Thomas; Caterina Ducati; Rowan Leary; Paul A. Midgley
From its initial appearance as a low‐resolution commercial instrument in the early 1960s to its present ultra‐high‐resolution (aberration‐corrected) state, the electron microscope has proved invaluable, often uniquely so, in the elucidation of structural aspects of solid catalysts. When one of us (JMT) used it for the study of surface reactivities of layered solids (graphite and molybdenite), topographical features at a resolution of 3.4 Å could be readily distinguished by using the so‐called gold‐decoration technique, which enabled the catalytic channelling of graphite surfaces (by nanoparticles of various metals) to be charted. This technique also enabled vacancy concentrations in individual (i.e., graphene) layers to be quantitatively determined with unequalled precision. Progressive improvements in electron, optical and other instrumental features became so significant that, by the early 1980s, high‐resolution images of zeolites, intercalates and metal‐carbide‐tipped multiwall carbon nanotubes could be routinely retrieved. High‐resolution studies of zeolites (natural and synthetic) proved particularly illuminating, as they uncovered the ubiquity of coherent (regular and irregular) intergrowths, especially amongst the important pentasil catalysts (ZSM‐5 and ZSM‐11, that is, MFI and MEL structural types).
Advanced Structural and Chemical Imaging | 2015
Zineb Saghi; Martin Benning; Rowan Leary; Manuel Macias-Montero; Ana Borras; Paul A. Midgley
Multi-dimensional electron microscopy has recently gained considerable interest thanks to the advent of microscopes with unprecedented analytical and in situ capabilities. These information-rich imaging modes, though, are often subject to long acquisition times and large data generation. In this paper, we explore novel acquisition strategies and reconstruction algorithms to retrieve reliable reconstructions from datasets that are limited in terms of both per image and tilt series angular sampling. We show that inpainting techniques are capable of restoring scanning transmission electron microscopy images in which a very restricted number of pixels are scanned, while compressed sensing tomographic reconstruction is capable of minimising artefacts due to angular subsampling. An example of robust reconstruction from data constituting a dose reduction of 10× is presented, using an organic/inorganic core-shell nanowire as a test sample. The combination of these novel acquisition schemes and image recovery strategies provides new avenues to reduced-dose and high-speed imaging.
Journal of Physical Chemistry C | 2016
Rowan Leary; Anjli Kumar; Patrick J. Straney; Sean M. Collins; Sadegh Yazdi; Rafal E. Dunin-Borkowski; Paul A. Midgley; Jill E. Millstone; Emilie Ringe
Catalytic and optical properties can be coupled by combining different metals into nanoscale architectures in which both the shape and the composition provide fine-tuning of functionality. Here, discrete, small Pt nanoparticles (diameter = 3–6 nm) were grown in linear arrays on Au nanoprisms, and the resulting structures are shown to retain strong localized surface plasmon resonances. Multidimensional electron microscopy and spectroscopy techniques (energy-dispersive X-ray spectroscopy, electron tomography, and electron energy-loss spectroscopy) were used to unravel their local composition, three-dimensional morphology, growth patterns, and optical properties. The composition and tomographic analyses disclose otherwise ambiguous details of the Pt-decorated Au nanoprisms, revealing that both pseudospherical protrusions and dendritic Pt nanoparticles grow on all faces of the nanoprisms (the faceted or occasionally twisted morphologies of which are also revealed), and shed light on the alignment of the Pt nanoparticles. The electron energy-loss spectroscopy investigations show that the Au nanoprisms support multiple localized surface plasmon resonances despite the presence of pendant Pt nanoparticles. The plasmonic fields at the surface of the nanoprisms indeed extend into the Pt nanoparticles, opening possibilities for combined optical and catalytic applications. These insights pave the way toward comprehensive nanoengineering of multifunctional bimetallic nanostructures, with potential applications in plasmon-enhanced catalysis and in situ monitoring of chemical processes via surface-enhanced spectroscopy.