Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roxana Carolina Cano is active.

Publication


Featured researches published by Roxana Carolina Cano.


Muscle & Nerve | 2000

Cruzipain induces autoimmune response against skeletal muscle and tissue damage in mice

Laura Giordanengo; Ricardo Fretes; Hugo Díaz; Roxana Carolina Cano; Alejandra Bacile; Elsa Vottero-Cima; Susana Gea

The goal of the current study was to investigate whether cruzipain, a major Trypanosoma cruzi antigen, is able to induce in mice an autoimmune response and skeletal muscle damage. We demonstrate that immunization with cruzipain triggers immunoglobulin G antibody binding to a 210‐kDa antigen from a syngeneic skeletal muscle extract. The absorption of immune sera with purified myosin completely eliminated this reactivity, confirming that the protein identified is really myosin. We also found that spleen cells from immunized mice proliferated in response to a skeletal muscle extract rich in myosin and to purified myosin. Cells from control mice did not proliferate against any of the antigens tested. In addition, we observed an increase in plasma creatine kinase activity, a biochemical marker of muscle damage. Histological studies showed inflammatory infiltrates and myopathic changes in skeletal muscle of immunized animals. Electromyographic studies of these mice revealed changes such as are found in inflammatory or necrotic myopathy. Altogether, our results suggest that this experimental model provides strong evidence for a pathogenic role of anticruzipain immune response in the development of muscle tissue damage.


European Journal of Immunology | 2014

Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection

Alfredo R. Arocena; Luisina I. Onofrio; Andrea Pellegrini; Antonio E. Carrera Silva; Augusto F. Paroli; Roxana Carolina Cano; Maria Pilar Aoki; Susana Gea

Myeloid‐derived suppressor cells (MDSCs) are key players in the immune suppressive network. During acute infection with the causative agent of Chagas disease, Trypanosoma cruzi, BALB/c mice show less inflammation and better survival than C57BL/6 (B6) mice. In this comparative study, we found a higher number of MDSCs in the spleens and livers of infected BALB/c mice compared with infected B6 mice. An analysis of the two major MDSCs subsets revealed a greater number of granulocytic cells in the spleens and livers of BALB/c mice when compared with that in B6 mice. Moreover, splenic MDSCs purified from infected BALB/c mice inhibited ConA‐induced splenocyte proliferation. Mechanistic studies demonstrated that ROS and nitric oxide were involved in the suppressive activity of MDSCs, with a higher number of infected CD8+ T cells suffering surface‐nitration compared to uninfected controls. An upregulation of NADPH oxidase p47 phox subunit and p‐STAT3 occurred in MDSCs and infected IL‐6 KO mice showed less recruitment of MDSCs and impaired survival. Remarkably, in vivo depletion of MDSCs led to increased production of IL‐6, IFN‐γ, and a Th17 response with very high parasitemia and mortality. These findings demonstrate a new facet of MDSCs as crucial regulators of inflammation during T. cruzi infection.


PLOS Neglected Tropical Diseases | 2010

Importance of TLR2 on hepatic immune and non-immune cells to attenuate the strong inflammatory liver response during Trypanosoma cruzi acute infection.

Eugenio Antonio Carrera-Silva; Natalia Guiñazú; Andrea Pellegrini; Roxana Carolina Cano; Alfredo R. Arocena; Maria Pilar Aoki; Susana Gea

Background Toll-like receptors (TLR) and cytokines play a central role in the pathogen clearance as well as in pathological processes. Recently, we reported that TLR2, TLR4 and TLR9 are differentially modulated in injured livers from BALB/c and C57BL/6 (B6) mice during Trypanosoma cruzi infection. However, the molecular and cellular mechanisms involved in local immune response remain unclear. Methodology/Principal Findings In this study, we demonstrate that hepatic leukocytes from infected B6 mice produced higher amounts of pro-inflammatory cytokines than BALB/c mice, whereas IL10 and TGFβ were only released by hepatic leukocytes from BALB/c. Strikingly, a higher expression of TLR2 and TLR4 was observed in hepatocytes of infected BALB/c mice. However, in infected B6 mice, the strong pro-inflammatory response was associated with a high and sustained expression of TLR9 and iNOS in leukocytes and hepatic tissue respectively. Additionally, co-expression of gp91- and p47-phox NADPH oxidase subunits were detected in liver tissue of infected B6 mice. Notably, the pre-treatment previous to infection with Pam3CSK4, TLR2-agonist, induced a significant reduction of transaminase activity levels and inflammatory foci number in livers of infected B6 mice. Moreover, lower pro-inflammatory cytokines and increased TGFβ levels were detected in purified hepatic leukocytes from TLR2-agonist pre-treated B6 mice. Conclusions/Significance Our results describe some of the main injurious signals involved in liver immune response during the T. cruzi acute infection. Additionally we show that the administration of Pam3CSk4, previous to infection, can attenuate the exacerbated inflammatory response of livers in B6 mice. These results could be useful to understand and design novel immune strategies in controlling liver pathologies.


Medical Microbiology and Immunology | 2012

Toll-like receptor-2 and interleukin-6 mediate cardiomyocyte protection from apoptosis during Trypanosoma cruzi murine infection

Nicolás Eric Ponce; Roxana Carolina Cano; Eugenio Antonio Carrera-Silva; Ana Paula C. A. Lima; Susana Gea; Maria Pilar Aoki

Local innate immunity plays a key role in initiating and coordinating homeostatic and defense responses in the heart. We have previously reported that the cardiotropic parasite Trypanosoma cruzi, the etiological agent of Chagas disease, protects cardiomyocytes against growth factor deprivation-induced apoptosis. In this study, we investigated cardiomyocyte innate immune response to T. cruzi infection and its role in cellular protection from apoptosis. We found that Toll-like receptor (TLR) 2-expressing cells were strongly increased by the parasite in BALB/c neonatal mouse cardiomyocyte cultures. Using a dominant-negative system, we showed that TLR2 mediated cardiomyocyte survival and the secretion of interleukin (IL) 6, which acted as an essential anti-apoptotic factor. Moreover, IL6 released by infected cells, as well as the recombinant bioactive cytokine, induced the phosphorylation of the signal transducers and activators of transcription-3 (STAT3) in cultured cardiomyocytes. In accord with the in vitro results, during the acute phase of the infection, TLR2 expression increased 2.9-fold and the anti-apoptotic factor Bcl-2 increased 4.5-fold in the cardiac tissue. We have clearly shown a cross-talk between the intrinsic innate response of cardiomyocytes and the pro-survival effect evoked by the parasite.


Future Microbiology | 2011

The role of Toll-like receptors and adaptive immunity in the development of protective or pathological immune response triggered by the Trypanosoma cruzi protozoan

Andrea Pellegrini; Natalia Guiñazú; Laura Giordanengo; Roxana Carolina Cano; Susana Gea

Trypanosoma cruzi, the causal agent of Chagas disease, is an intracellular protozoan parasite that predominantly invades macrophages and cardiomyocytes, leading to persistent infection. Several members of the Toll-like receptor family are crucial for innate immunity to infection and are involved in maintaining tissue homeostasis. This review focuses on recent experimental findings of the innate and adaptive immune response in controlling the parasite and/or in generating heart and liver tissue injury. We also describe the importance of the hosts genetic background in the outcome of the disease and emphasize the importance of studying the response to specific parasite antigens. Understanding the dual participation of the immune response may contribute to the design of new therapies for Chagas disease.


Oncotarget | 2016

Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model

María E. Cabalén; María Fernanda Cabral; Liliana Maria Sanmarco; Marta Cecilia Andrada; Luisina I. Onofrio; Nicolás Eric Ponce; Maria Pilar Aoki; Susana Gea; Roxana Carolina Cano

Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4−/− mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression.


Medical Microbiology and Immunology | 2011

Trypanosoma cruzi antigen immunization induces a higher B cell survival in BALB/c mice, a susceptible strain, compared to C57BL/6 B lymphocytes, a resistant strain to cardiac autoimmunity

Andrea Pellegrini; Eugenio Antonio Carrera-Silva; Alfredo R. Arocena; Roxana Carolina Cano; Maria Pilar Aoki; Susana Gea

Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and represents the most common infectious myocarditis worldwide. Autoimmunity is one of the mechanisms contributing to its pathogenesis. Although the cellular interactions that promote this autoimmune response are still poorly understood, several studies have demonstrated a key role for B lymphocytes since they secrete antibodies, cytokines and present antigens. Recently, we reported that immunization with cruzipain, an immunodominant T. cruzi antigen, induces a higher activation state in B cells from BALB/c mice (susceptible to cardiac autoimmunity) than B lymphocytes from C57BL/6 (a resistant strain). Here, we focused on the study of B cell survival in both mouse strains after cruzipain immunization and demonstrated an increased survival rate of B cells from BALB/c compared to C57BL/6 mice. This phenomenon was associated with a decreased expression of Fas/FasL and an increased expression of anti-apoptotic Bcl-2/Bcl-xL proteins. With the purpose to gain more knowledge about the mechanisms involved, we found that IL-4 produced by BALB/c B cells played a key role in the survival in an autocrine way whereas the addition of this bioactive cytokine rescued C57BL/6 B lymphocytes from apoptosis. Our findings suggest that in the absence of infection, both enhanced B cell activation induced by the immunization with a single parasite antigen and insufficient negative regulation can potentially contribute to autoimmunity seen in cruzipain immune BALB/c mice.


Journal of Immunology | 2016

CD73 Inhibition Shifts Cardiac Macrophage Polarization toward a Microbicidal Phenotype and Ameliorates the Outcome of Experimental Chagas Cardiomyopathy

Nicolás Eric Ponce; Liliana Maria Sanmarco; Natalia Eberhardt; Mónica C. García; Héctor Walter Rivarola; Roxana Carolina Cano; Maria Pilar Aoki

Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5′-α,β-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4– and IL-10–producing CD4+ T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle–brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target.


Neuroimmunomodulation | 2010

Immune neuroendocrine interactions during a fungal infection in immunocompetent or immunosuppressed hosts.

Maria Cecilia Rodriguez-Galan; Claudia E. Sotomayor; Roxana Carolina Cano; Carina Porporatto; María Sol Renna; Hugo Cejas; Silvia G. Correa

The yeast Candida albicans belongs to the microflora of healthy individuals, although it can infect a variety of tissues ensuing changes in the host’s immune status. To evaluate the effect of neuroendocrine input on the early immune response during the fungal infection, we use a 3-day paradigm of chronic varied stress in Wistar rats infected with C. albicans. We find that stress mediators contribute to the spread of the fungus and downregulate critical functions of phagocytic cells at the infection site. Phenotypic and functional alterations of effector cells account for the decreased resistance to candidiasis and condition the development of the adaptive response. Stressed hosts exhibit a higher fungal burden in kidneys and livers associated with hyphal forms. The hepatic inflammatory reaction is compromised with severe steatosis, increment of functional enzymes, marked lipid peroxidation and hepatocyte apoptosis. Moreover, infection-related sickness symptoms are significantly increased by exposure to stress with anorexia, weight loss, lack of leptin and depletion of glycogen depots. Food deprivation exacerbates the liver injury. Stress mediators perturb the complex immune and metabolic program that operates early during fungal spread and promotes severe tissue damage.


PLOS Neglected Tropical Diseases | 2015

Trypanosoma cruzi infection is a potent risk factor for non-alcoholic steatohepatitis enhancing local and systemic inflammation associated with strong oxidative stress and metabolic disorders.

Luisina I. Onofrio; Alfredo R. Arocena; Augusto F. Paroli; María E. Cabalén; Marta Cecilia Andrada; Roxana Carolina Cano; Susana Gea

Background The immune mechanisms underlying experimental non-alcoholic steatohepatitis (NASH), and more interestingly, the effect of T. cruzi chronic infection on the pathogenesis of this metabolic disorder are not completely understood. Methodology/Principal Findings We evaluated immunological parameters in male C57BL/6 wild type and TLR4 deficient mice fed with a standard, low fat diet, LFD (3% fat) as control group, or a medium fat diet, MFD (14% fat) in order to induce NASH, or mice infected intraperitoneally with 100 blood-derived trypomastigotes of Tulahuen strain and also fed with LFD (I+LFD) or MFD (I+MFD) for 24 weeks. We demonstrated that MFD by itself was able to induce NASH in WT mice and that parasitic infection induced marked metabolic changes with reduction of body weight and steatosis revealed by histological studies. The I+MFD group also improved insulin resistance, demonstrated by homeostasis model assessment of insulin resistance (HOMA-IR) analysis; although parasitic infection increased the triglycerides and cholesterol plasma levels. In addition, hepatic M1 inflammatory macrophages and cytotoxic T cells showed intracellular inflammatory cytokines which were associated with high levels of IL6, IFNγ and IL17 plasmatic cytokines and CCL2 chemokine. These findings correlated with an increase in hepatic parasite load in I+MFD group demonstrated by qPCR assays. The recruitment of hepatic B lymphocytes, NK and dendritic cells was enhanced by MFD, and it was intensified by parasitic infection. These results were TLR4 signaling dependent. Flow cytometry and confocal microscopy analysis demonstrated that the reactive oxygen species and peroxinitrites produced by liver inflammatory leukocytes of MFD group were also exacerbated by parasitic infection in our NASH model. Conclusions We highlight that a medium fat diet by itself is able to induce steatohepatitis. Our results also suggest a synergic effect between damage associated with molecular patterns generated during NASH and parasitic infection, revealing an intense cross-talk between metabolically active tissues, such as the liver, and the immune system. Thus, T. cruzi infection must be considered as an additional risk factor since exacerbates the inflammation and accelerates the development of hepatic injury.

Collaboration


Dive into the Roxana Carolina Cano's collaboration.

Top Co-Authors

Avatar

Susana Gea

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Maria Pilar Aoki

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Andrea Pellegrini

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Luisina I. Onofrio

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Alfredo R. Arocena

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Marta Cecilia Andrada

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Natalia Guiñazú

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Claudia E. Sotomayor

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugo Cejas

National University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge