Roxane Simeone
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roxane Simeone.
PLOS Pathogens | 2012
Roxane Simeone; Alexandre Bobard; Wilbert Bitter; Laleh Majlessi; Roland Brosch; Jost Enninga
Survival within macrophages is a central feature of Mycobacterium tuberculosis pathogenesis. Despite significant advances in identifying new immunological parameters associated with mycobacterial disease, some basic questions on the intracellular fate of the causative agent of human tuberculosis in antigen-presenting cells are still under debate. To get novel insights into this matter, we used a single-cell fluorescence resonance energy transfer (FRET)-based method to investigate the potential cytosolic access of M. tuberculosis and the resulting cellular consequences in an unbiased, quantitative way. Analysis of thousands of THP-1 macrophages infected with selected wild-type or mutant strains of the M. tuberculosis complex unambiguously showed that M. tuberculosis induced a change in the FRET signal after 3 to 4 days of infection, indicating phagolysosomal rupture and cytosolic access. These effects were not seen for the strains M. tuberculosisΔRD1 or BCG, both lacking the ESX-1 secreted protein ESAT-6, which reportedly shows membrane-lysing properties. Complementation of these strains with the ESX-1 secretion system of M. tuberculosis restored the ability to cause phagolysosomal rupture. In addition, control experiments with the fish pathogen Mycobacterium marinum showed phagolysosomal translocation only for ESX-1 intact strains, further validating our experimental approach. Most importantly, for M. tuberculosis as well as for M. marinum we observed that phagolysosomal rupture was followed by necrotic cell death of the infected macrophages, whereas ESX-1 deletion- or truncation-mutants that remained enclosed within phagolysosomal compartments did not induce such cytotoxicity. Hence, we provide a novel mechanism how ESX-1 competent, virulent M. tuberculosis and M. marinum strains induce host cell death and thereby escape innate host defenses and favor their spread to new cells. In this respect, our results also open new research directions in relation with the extracellular localization of M. tuberculosis inside necrotic lesions that can now be tackled from a completely new perspective.
Current Opinion in Microbiology | 2009
Roxane Simeone; Daria Bottai; Roland Brosch
The ESX-1 system is responsible for the secretion of the prototypic ESX proteins, namely the 6 kDa early secreted antigenic target (ESAT-6) and the 10 kDa culture filtrate protein (CFP-10). These two proteins, which form a 1:1 heterodimeric complex, are among the most important proteins of Mycobacterium tuberculosis involved in host-pathogen interaction. They induce a strong T cell mediated immune response, are apparently involved in membrane and/or host-cell lysis and represent key virulence factors. There are four other paralogous ESX systems in M. tuberculosis, some of which are essential for in vitro growth. ESX systems also exist in many other actinobacteria and Gram-positive bacteria, and have recently been suggested to be named type VII secretion systems.
Journal of Biological Chemistry | 2011
Serge Mostowy; Vanessa Sancho-Shimizu; Mélanie Anne Hamon; Roxane Simeone; Roland Brosch; Terje Johansen; Pascale Cossart
Autophagy is an important mechanism of innate immune defense. We have recently shown that autophagy components are recruited with septins, a new and increasingly characterized cytoskeleton component, to intracytosolic Shigella that have started to polymerize actin. On the other hand, intracytosolic Listeria avoids autophagy recognition by expressing ActA, a bacterial effector required for actin polymerization. Here, we exploit Shigella and Listeria as intracytosolic tools to characterize different pathways of selective autophagy. We show that the ubiquitin-binding adaptor proteins p62 and NDP52 target Shigella to an autophagy pathway dependent upon septin and actin. In contrast, p62 or NDP52 targets the Listeria ActA mutant to an autophagy pathway independent of septin or actin. TNF-α, a host cytokine produced upon bacterial infection, stimulates p62-mediated autophagic activity and restricts the survival of Shigella and the Listeria ActA mutant. These data provide a new molecular framework to understand the emerging complexity of autophagy and its ability to achieve specific clearance of intracytosolic bacteria.
Nature Genetics | 2013
Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez
Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.
Nature Genetics | 2013
Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez
Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.
Autophagy | 2012
Alessandra Romagnoli; Marilena P. Etna; Elena Giacomini; Manuela Pardini; Maria Elena Remoli; Marco Corazzari; Laura Falasca; Delia Goletti; Valérie Gafa; Roxane Simeone; Giovanni Delogu; Mauro Piacentini; Roland Brosch; Gian Maria Fimia; Eliana M. Coccia
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.
Molecular Microbiology | 2012
Daria Bottai; M. di Luca; Laleh Majlessi; Wafa Frigui; Roxane Simeone; Fadel Sayes; Wilbert Bitter; Michael J. Brennan; Claude Leclerc; Giovanna Batoni; Mario Campa; Roland Brosch; Semih Esin
The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX‐1–ESX‐5). While the role of the ESX‐1 and ESX‐3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX‐5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX‐5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX‐5 knockout/deletion mutants, inactivating eccA5, eccD5, rv1794 and esxM genes or the ppe25‐pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX‐5‐encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD5ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD5ko and MtbΔppe25‐pe19 mutants were found attenuated both in macrophages and in the severe combined immune‐deficient mouse infection model. Altogether these findings indicate an essential role of ESX‐5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.
Emerging Infectious Diseases | 2012
Jakko van Ingen; Zeaur Rahim; Arnout Mulder; Martin J. Boeree; Roxane Simeone; Roland Brosch; Dick van Soolingen
The oryx bacilli are Mycobacterium tuberculosis complex organisms for which phylogenetic position and host range are unsettled. We characterized 22 isolates by molecular methods and propose elevation to subspecies status as M. orygis. M. orygis is a causative agent of tuberculosis in animals and humans from Africa and South Asia.
PLOS Pathogens | 2015
Roxane Simeone; Fadel Sayes; Ok-Ryul Song; Matthias I. Gröschel; Priscille Brodin; Roland Brosch; Laleh Majlessi
Mycobacterium tuberculosis (Mtb) uses efficient strategies to evade the eradication by professional phagocytes, involving—as recently confirmed—escape from phagosomal confinement. While Mtb determinants, such as the ESX-1 type VII secretion system, that contribute to this phenomenon are known, the host cell factors governing this important biological process are yet unexplored. Using a newly developed flow-cytometric approach for Mtb, we show that macrophages expressing the phagosomal bivalent cation transporter Nramp-1, are much less susceptible to phagosomal rupture. Together with results from the use of the phagosome acidification inhibitor bafilomycin, we demonstrate that restriction of phagosomal acidification is a prerequisite for mycobacterial phagosomal rupture and cytosolic contact. Using different in vivo approaches including an enrichment and screen for tracking rare infected phagocytes carrying the CD45.1 hematopoietic allelic marker, we here provide first and unique evidence of M. tuberculosis-mediated phagosomal rupture in mouse spleen and lungs and in numerous phagocyte types. Our results, linking the ability of restriction of phagosome acidification to cytosolic access, provide an important conceptual advance for our knowledge on host processes targeted by Mtb evasion strategies.
Nature Reviews Microbiology | 2016
Matthias I. Gröschel; Fadel Sayes; Roxane Simeone; Laleh Majlessi; Roland Brosch
Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.