Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy Copping is active.

Publication


Featured researches published by Roy Copping.


Journal of the American Chemical Society | 2009

A comparison of 4f vs 5f metal-metal bonds in (CpSiMe3)3M-ECp* (M = Nd, U; E = Al, Ga; Cp* = C5Me5): synthesis, thermodynamics, magnetism, and electronic structure.

Stefan G. Minasian; Jamin L. Krinsky; Jeffrey D. Rinehart; Roy Copping; Tolek Tyliszczak; Markus Janousch; David K. Shuh; John Arnold

Reaction of (CpSiMe(3))(3)U or (CpSiMe(3))(3)Nd with (Cp*Al)(4) or Cp*Ga (Cp* = C(5)Me(5)) afforded the isostructural complexes (CpSiMe(3))(3)M-ECp* (M = U, E = Al (1); M = U, E = Ga (2); M = Nd, E = Al (3); M = Nd, E = Ga (4)). In the case of 1 and 2 the complexes were isolated in 39 and 90% yields, respectively, as crystalline solids and were characterized by single-crystal X-ray diffraction, variable-temperature (1)H NMR spectroscopy, elemental analysis, variable-temperature magnetic susceptibility, and UV-visible-NIR spectroscopy. In the case of 3 and 4, the complexes were observed by variable-temperature (1)H NMR spectroscopy but were not isolated as pure materials. Comparison of the equilibrium constants and thermodynamic parameters DeltaH and DeltaS obtained by (1)H NMR titration methods revealed a much stronger U-Ga interaction in 2 than the Nd-Ga interaction in 4. Competition reactions between (CpSiMe(3))(3)U and (CpSiMe(3))(3)Nd indicate that Cp*Ga selectively binds U over Nd in a 93:7 ratio at 19 degrees C and 96:4 at -33 degrees C. For 1 and 3, comparison of (1)H NMR peak intensities suggests that Cp*Al also achieves excellent U(III)/Nd(III) selectivity at 21 degrees C. The solution electronic spectra and solid-state temperature-dependent magnetic susceptibilities of 1 and 2, in addition to X-ray absorption near-edge structure (XANES) measurements from scanning transmission X-ray microscopy (STXM) of 1, are consistent with those observed for other U(III) coordination complexes. DFT calculations using five different functionals were performed on the model complexes Cp(3)M-ECp (M = Nd, U; E = Al, Ga), and empirical fitting of the values for Cp(3)M-ECp allowed the prediction of binding energy estimates for Cp*Al compounds 1 and 3. NBO/NLMO bonding analyses on Cp(3)U-ECp indicate that the bonding consists predominantly of a E-->U sigma-interaction arising from favorable overlap between the diffuse ligand lone pair and the primarily 7s/6d acceptor orbitals on U(III), with negligible U-->E pi-donation. The overall experimental and computational bonding analysis suggests that Cp*Al and Cp*Ga behave as good sigma-donors in these systems.


Inorganic Chemistry | 2008

Tetravalent Metal Complexation by Keggin and Lacunary Phosphomolybdate Anions

Roy Copping; Leif Jonasson; Andrew J. Gaunt; Dennis Drennan; David Collison; Madeleine Helliwell; Ross J. Pirttijarvi; Christopher J. Jones; Anne Huguet; David C. Apperley; Nikolas Kaltsoyannis; Iain May

We report the synthesis, spectroscopic and structural characterization, and computational analysis of a series of phosphomolybdate complexes with tetravalent metal cations. The reaction between Ce (IV) and Th (IV) with phosphomolybdate at the optimum pH for the stabilization of the lacunary heteropolyoxometalate anion, [PMo 11O 39] (7-), results in the formation of compounds containing the anions [Ce(PMo 11O 39) 2] (10-) and [Th(PMo 11O 39) 2] (10-), respectively. Single crystal X-ray diffraction analysis was performed on salts of both species, Cs 10[Ce(PMo 11O 39) 2].20H 2O and (NH 4) 10[Th(PMo 11O 39) 2].22H 2O. In both anionic complexes the f-block metal cation is coordinated to the four unsaturated terminal lacunary site oxygens of each [PMo 11O 39] (7-) anion, yielding 8 coordinate sandwich complexes, analogous to previously prepared related complexes. Spectroscopic characterization points to the stability of these complexes in solution over a reasonably wide pH range. Density functional analysis suggests that the Ce-O bond strength in [Ce(PMo 11O 39) 2] (10-) is greater than the Th-O bond strength in [Th(PMo 11O 39) 2] (10-), with the dominant bonding interaction being ionic in both cases. In contrast, under similar reaction conditions, the dominant solid state Zr (IV) and Hf (IV) complexes formed contain the anions [Zr(PMo 12O 40)(PMo 11O 39)] (6-) and [Hf(PMo 12O 40)(PMo 11O 39)] (6-), respectively. In these complexes the central Group 4 d-block metal cations are coordinated to the four unsaturated terminal lacunary site oxygens of the [PMo 11O 39] (7-) ligand and to four bridging oxygens of a plenary Keggin anion, [PMo 12O 40] (3-). In addition, (NH 4) 5{Hf[PMo 12O 40][(NH 4)PMo 11O 39]}.23.5H 2O can be crystallized as a minor product. The structure of the anion, {Hf[PMo 12O 40][(NH 4)PMo 11O 39]} (5-), reveals coordination of the central Hf (IV) cation via four bridging oxygens on both the coordinated [PMo 11O 39] (7-) and [PMo 12O 40] (3-) anions. Unusually, the highly charged lacunary site remains uncoordinated to the Hf metal center but instead interacts with an ammonium cation. (31)P NMR indicates that complexation of the Keggin anion, [PMo 12O 40] (3-), to Hf (IV) and Zr (IV) will stabilize the Keggin anion to a much higher pH than usually observed.


Inorganic Chemistry | 2010

La2U2Se9: an ordered lanthanide/actinide chalcogenide with a novel structure type.

Daniel E. Bugaris; Roy Copping; Tolek Tyliszczak; David K. Shuh; James A. Ibers

The compound La(2)U(2)Se(9) was obtained in high yield from the stoichiometric reaction of the elements in an Sb(2)Se(3) flux at 1123 K. The compound, which crystallizes in a new structure type in space group Pmma of the orthorhombic system, has a three-dimensional structure with alternating U/Se and La/Se layers attached via three independent, infinite polyselenide chains. The U atom has a monocapped square antiprismatic coordination of Se atoms, whereas one La atom is bicapped square prismatic and the other La atom is trigonal prismatic. La(2)U(2)Se(9) displays an antiferromagnetic transition at T(N) = 5 K; above 50 K, the paramagnetic behavior can be fit to the Curie-Weiss law, yielding a mu(eff) of 3.10(1) mu(B)/U. The low-temperature specific heat of La(2)U(2)Se(9) exhibits no anomalous behavior near the Neel temperature that might indicate long-range magnetic ordering or a phase transition. X-ray absorption near-edge structure (XANES) spectra have confirmed the assignment of formal oxidation states of +III for lanthanum and +IV for uranium in La(2)U(2)Se(9).


Dalton Transactions | 2012

A tetrameric neptunyl(V) cluster supported by a Schiff base ligand

Roy Copping; Victor Mougel; Christophe Den Auwer; Claude Berthon; Philippe Moisy; Marinella Mazzanti

The first tetrameric cation-cation neptunyl(v) cluster, [{NpO(2)(salen)}(4)(μ(8)-K)(2)][K(18C6)Py](2), has been synthesized in non-aqueous solution from the reaction of [(NpO(2)Py(5))(KI(2)Py(2))](n) with K(2)salen and its structure determined in the solid state and in solution where the complex retains its tetrameric form.


Inorganic Chemistry | 2014

Toward equatorial planarity about uranyl: synthesis and structure of tridentate nitrogen-donor {UO2}2+ complexes.

Roy Copping; Byoungseon Jeon; C. Das Pemmaraju; Shuao Wang; Simon J. Teat; Markus Janousch; Tolek Tyliszczak; Andrew Canning; Niels Grønbech-Jensen; David Prendergast; David K. Shuh

The reaction of UO2Cl2·3THF with the tridentate nitrogen donor ligand 2,6-bis(2-benzimidazolyl)pyridine (H2BBP) in pyridine leads to the formation of three different complexes: [(UO2)(H2BBP)Cl2] (1), [(UO)2(HBBP)(Py)Cl] (2), and [(UO2)(BBP)(Py)2] (3) after successive deprotonation of H2BBP with a strong base. Crystallographic determination of 1-3 reveals that increased charge through ligand deprotonation and displacement of chloride leads to equatorial planarity about uranyl as well as a more compact overall coordination geometry. Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectra of 1-3 at the U-4d edges have been recorded using a soft X-ray Scanning Transmission X-ray Microscope (STXM) and reveal the uranium 4d5/2 and 4d3/2 transitions at energies associated with uranium in the hexavalent oxidation state. First-principles Density Functional Theory (DFT) electronic structure calculations for the complexes have been performed to determine and validate the coordination characteristics, which correspond well to the experimental results.


Dalton Transactions | 2009

Probing the 5f electrons in a plutonyl(VI) cluster complex

Roy Copping; Catherine Talbot-Eeckelaers; David Collison; Madeleine Helliwell; Andrew J. Gaunt; Iain May; Sean D. Reilly; Brian L. Scott; Ross D. McDonald; Oscar A. Valenzula; Christopher J. Jones; Mark J. Sarsfield

We report the structural, spectroscopic and preliminary magnetic characterisation of a tri-metallic plutonyl(VI) polyoxometalate complex, K(11)[K(3)(PuO(2))(3)(GeW(9)O(34))(2)] x 12 H(2)O.


Dalton Transactions | 2005

Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11−

Roy Copping; Andrew J. Gaunt; Iain May; Mark J. Sarsfield; David Collison; Madeleine Helliwell; Iain S. Denniss; David C. Apperley

We report the syntheses and crystal structures of (NH4)11[Ln(III)(PMo11O39)2.xH2O (where Ln = every trivalent lanthanide cation except promethium) in which two lacunary [PMo11O39]7- anions sandwich an 8-coordinate Ln(III) cation to yield the complex anion, [LnIII(PMo11O39)2]11-. The 14 salts crystallise in two different space groups, C2/c or P1, but the LnIII containing anions are isostructural across the whole series, a very rare example of such a complete study. Solid state and solution 31P NMR, Raman and IR spectroscopies have been used to prove the stability of [Ln(PMo11O39)2]11- in aqueous solution. As expected, the LnIII cation contracts across the series and the Ln-O bond distances decrease uniformly. Interestingly, the splitting in the nu(P-O) mode within the [PMo11O39]7- unit increases uniformly across the series, which we attribute to the stronger interaction with the smaller, higher charge density LnIII cation as the series is traversed. For the 31P NMR measurements a direct comparison of Lanthanide Induced (paramagnetic) Shift could be made with the analogous [P(W11O39)2]11- complexes.


Inorganic Chemistry | 2014

Bonding and Charge Transfer in Nitrogen-Donor Uranyl Complexes: Insights from NEXAFS Spectra

C. D. Pemmaraju; Roy Copping; Shuao Wang; Markus Janousch; Simon J. Teat; Tolek Tyliszcak; Andrew Canning; David K. Shuh; David Prendergast

We investigate the electronic structure of three newly synthesized nitrogen-donor uranyl complexes [(UO2)(H2bbp)Cl2], [(UO)2(Hbbp)(Py)Cl], and [(UO2)(bbp)(Py)2] using a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments and simulations. The complexes studied feature derivatives of the tunable tridentate N-donor ligand 2,6-bis(2-benzimidazyl)pyridine (bbp) and exhibit discrete chemical differences in uranyl coordination. The sensitivity of the N K-edge X-ray absorption spectrum to local bonding and charge transfer is exploited to systematically investigate the evolution of structural as well as electronic properties across the three complexes. A thorough interpretation of the measured experimental spectra is achieved via ab initio NEXAFS simulations based on the eXcited electron and Core-Hole (XCH) approach and enables the assignment of spectral features to electronic transitions on specific absorbing sites. We find that ligand-uranyl bonding leads to a signature blue shift in the N K-edge absorption onset, resulting from charge displacement toward the uranyl, while changes in the equatorial coordination shell of the uranyl lead to more subtle modulations in the spectral features. Theoretical simulations show that the flexible local chemistry at the nonbinding imidazole-N sites of the bbp ligand is also reflected in the NEXAFS spectra and highlights potential synthesis strategies to improve selectivity. In particular, we find that interactions of the bbp ligand with solvent molecules can lead to changes in ligand-uranyl binding geometry while also modulating the K-edge absorption. Our results suggest that NEXAFS spectroscopy combined with first-principles interpretation can offer insights into the coordination chemistry of analogous functionalized conjugated ligands.


Acta Crystallographica Section E-structure Reports Online | 2011

Tris(tetra-butyl-ammonium) tris-(nitrato-κO,O')tetra-kis-(thio-cyanato-κN)thorium(IV).

M. Janeth Lozano-Rodriguez; Pierre Thuéry; Sébastien Petit; Roy Copping; José Mustre de Leon; Christophe Den Auwer

The title compound, (C16H36N)3[Th(NCS)4(NO3)3], was obtained from the reaction of Th(NO3)4·5H2O with (Bu4N)(NCS). The ThIV atom is in a ten-coordinate environment of irregular geometry, being bound to the N atoms of the four thiocyanate ions and to three bidentate nitrate ions. The average Th—N and Th—O bond lengths are 2.481 (10) and 2.57 (3) Å, respectively.


MRS Proceedings | 2008

Scanning Transmission X-ray Spectromicroscopy of Actinide Complexes

David K. Shuh; Roy Copping; Tolek Tyliszczak; Ingrid Castro-Rodriguez

The fundamental characterization and understanding of 5f electron behavior in actinide complexes is imperative to provide an enhanced basis for the rational and accelerated development of improved processes relevant to nuclear energy. Soft x-ray absorption spectroscopy utilizing the scanning transmission x-ray microscope (STXM) at the Advanced Light Source-Molecular Environmental Science (ALS-MES) Beamline 11.0.2 has been used to probe the electronic characteristics of a nitrogen donor ligand 2,6-Bis(2-benzimidazyl)pyridine (BBP) and its resulting U(IV) complex. The nitrogen K- and carbon K-edges have been collected from both ligand and uranium complex, as well as the uranium 4d-edge from the complex. Upon complexation, the light element absorption spectra change markedly and the uranium spectra from the complex is compared to the reference spectrum obtained from U(IV)Cl 4 . The evolution of the spectral features are described and interpreted within a simple conceptual framework. Based on spectral evidence alone, the uranium is bound through the pyridine-like nitrogens and the oxidation state of the uranium is consistent with a U(IV) species.

Collaboration


Dive into the Roy Copping's collaboration.

Top Co-Authors

Avatar

Iain May

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David K. Shuh

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Gaunt

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David Collison

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Sean D. Reilly

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Rios

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tolek Tyliszczak

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles T. Kelsey

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge