Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy E. Barnewall is active.

Publication


Featured researches published by Roy E. Barnewall.


Laboratory Investigation | 2003

Pathology of Inhalation Anthrax in Cynomolgus Monkeys (Macaca fascicularis)

Daphne Vasconcelos; Roy E. Barnewall; Michael Babin; Robert E. Hunt; James E. Estep; Carl Nielsen; Robert Carnes; John Carney

Anthrax is considered a serious biowarfare and bioterrorism threat because of its high lethality, especially by the inhalation route. Rhesus macaques (Macaca mulatta) are the most commonly used nonhuman primate model of human inhalation anthrax exposure. The nonavailability of rhesus macaques necessitated development of an alternate model for vaccine testing and immunologic studies. This report describes the median lethal dose (LD50) and pathology of inhalation anthrax in cynomolgus macaques (Macaca fascicularis). Gross and microscopic tissue changes were reviewed in 14 cynomolgus monkeys that died or were killed after aerosol exposure of spores of Bacillus anthracis (Ames strain). The LD50 and 95% confidence intervals were 61,800 (34,000 to 110,000) colony-forming units. The most common gross lesions were mild splenomegaly, lymph node enlargement, and hemorrhages in various organs, particularly involving the meninges and the lungs. Mediastinitis, manifested as hemorrhage or edema, affected 29% of the monkeys. Microscopically, lymphocytolysis occurred in the intrathoracic lymph nodes and spleens of all animals, and was particularly severe in the spleen and in germinal centers of lymph nodes. Hemorrhages were common in lungs, bronchial lymph nodes, meninges, gastrointestinal tract, and mediastinum. These results demonstrate that the Ames strain of B. anthracis is lethal by the inhalation route in the cynomolgus macaque. The LD50 of the Ames strain of B. anthracis was within the expected experimental range of previously reported values in the rhesus monkey in an aerosol challenge. The gross and microscopic pathology of inhalation anthrax in the cynomolgus monkey is remarkably similar to that reported in rhesus monkeys and humans. The results of this study are important for the establishment of an alternative nonhuman primate model for evaluation of medical countermeasures against inhalational anthrax.


Microbiology and Molecular Biology Reviews | 2004

Rabbit and Nonhuman Primate Models of Toxin-Targeting Human Anthrax Vaccines

Andrew J. Phipps; Christopher Premanandan; Roy E. Barnewall; Michael D. Lairmore

SUMMARY The intentional use of Bacillus anthracis, the etiological agent of anthrax, as a bioterrorist weapon in late 2001 made our society acutely aware of the importance of developing, testing, and stockpiling adequate countermeasures against biological attacks. Biodefense vaccines are an important component of our arsenal to be used during a biological attack. However, most of the agents considered significant threats either have been eradicated or rarely infect humans alive today. As such, vaccine efficacy cannot be determined in human clinical trials but must be extrapolated from experimental animal models. This article reviews the efficacy and immunogenicity of human anthrax vaccines in well-defined animal models and the progress toward developing a rugged immunologic correlate of protection. The ongoing evaluation of human anthrax vaccines will be dependent on animal efficacy data in the absence of human efficacy data for licensure by the U.S. Food and Drug Administration.


Antimicrobial Agents and Chemotherapy | 2006

Pharmacokinetic Considerations and Efficacy of Levofloxacin in an Inhalational Anthrax (Postexposure) Rhesus Monkey Model

L. Mark Kao; Karen Bush; Roy E. Barnewall; James E. Estep; Frederic W. Thalacker; Pamela H. Olson; George L. Drusano; Neil Minton; Shuchean Chien; Alex Hemeryck; Michael F. Kelley

ABSTRACT Because the treatment of inhalational anthrax cannot be studied in human clinical trials, it is necessary to conduct efficacy studies using a rhesus monkey model. However, the half-life of levofloxacin was approximately three times shorter in rhesus monkeys than in humans. Computer simulations to match plasma concentration profile, area under the concentration-time curve (AUC), and time above MIC for a human oral dose of 500 mg levofloxacin once a day identified a dosing regimen in rhesus monkeys that would most closely match human exposure: 15 mg/kg followed by 4 mg/kg administered 12 h later. Approximately 24 h following inhalational exposure to approximately 49 times the 50% lethal doses of Bacillus anthracis (Ames strain), monkeys were treated daily with vehicle, levofloxacin, or ciprofloxacin for 30 days. Ciprofloxacin was administered at 16 mg/kg twice a day. Following the 30-day treatment, monkeys were observed for 70 days. Nine of 10 control monkeys died within 9 days of exposure. No clinical signs were observed in fluoroquinolone-treated monkeys during the 30 treatment days. One monkey died 8 days after levofloxacin treatment, and two monkeys from the ciprofloxacin group died 27 and 36 days posttreatment, respectively. These deaths were probably related to the germination of residual spores. B. anthracis was positively cultured from several tissues from the three fluoroquinolone-treated monkeys that died. MICs of levofloxacin and ciprofloxacin from these cultures were comparable to those from the inoculating strain. These data demonstrate that a humanized dosing regimen of levofloxacin was effective in preventing morbidity and mortality from inhalational anthrax in rhesus monkeys and did not select for resistance.


Clinical and Vaccine Immunology | 2012

A Three-Dose Intramuscular Injection Schedule of Anthrax Vaccine Adsorbed Generates Sustained Humoral and Cellular Immune Responses to Protective Antigen and Provides Long-Term Protection against Inhalation Anthrax in Rhesus Macaques

Conrad P. Quinn; Carol L. Sabourin; Nancy A. Niemuth; Han Li; Vera A. Semenova; Thomas L. Rudge; Heather J. Mayfield; Jarad Schiffer; Robert S. Mittler; Chris Ibegbu; Jens Wrammert; Rafi Ahmed; April M. Brys; Robert E. Hunt; Denyse Levesque; James E. Estep; Roy E. Barnewall; David M. Robinson; Brian D. Plikaytis; Nina Marano

ABSTRACT A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r2 = 0.89 for log10-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4+ cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Antigen-specific Vγ2Vδ2 T effector cells confer homeostatic protection against pneumonic plaque lesions

Dan Huang; Crystal Y. Chen; Zahida Ali; Lingyun Shao; Ling Shen; Hank Lockman; Roy E. Barnewall; Carol L. Sabourin; James Eestep; Armin Reichenberg; Martin Hintz; Hassan Jomaa; Richard Wang; Zheng W. Chen

The possibility that Vγ2Vδ2 T effector cells can confer protection against pulmonary infectious diseases has not been tested. We have recently demonstrated that single-dose (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) plus IL-2 treatment can induce prolonged accumulation of Vγ2Vδ2 T effector cells in lungs. Here, we show that a delayed HMBPP/IL-2 administration after inhalational Yersinia pestis infection induced marked expansion of Vγ2Vδ2 T cells but failed to control extracellular plague bacterial replication/infection. Surprisingly, despite the absence of infection control, expansion of Vγ2Vδ2 T cells after HMBPP/IL-2 treatment led to the attenuation of inhalation plague lesions in lungs. Consistently, HMBPP-activated Vγ2Vδ2 T cells accumulated and localized in pulmonary interstitials surrounding small blood vessels and airway mucosa in the lung tissues with no or mild plague lesions. These infiltrating Vγ2Vδ2 T cells produced FGF-7, a homeostatic mediator against tissue damages. In contrast, control macaques treated with glucose plus IL-2 or glucose alone exhibited severe hemorrhages and necrosis in most lung lobes, with no or very few Vγ2Vδ2 T cells detectable in lung tissues. The findings are consist with the paradigm that circulating Vγ2Vδ2 T cells can traffic to lungs for homeostatic protection against tissue damages in infection.


Clinical and Vaccine Immunology | 2012

Characterization of a Therapeutic Model of Inhalational Anthrax Using an Increase in Body Temperature in New Zealand White Rabbits as a Trigger for Treatment

Jason E. Comer; Bryan D. Ray; Lisa N. Henning; Gregory V. Stark; Roy E. Barnewall; Jason Mott; Gabriel T. Meister

ABSTRACT The development of an appropriate animal therapeutic model is essential to assess the potential efficacy of therapeutics for use in the event of a Bacillus anthracis exposure. We conducted a natural history study that showed New Zealand White rabbits exhibited a significant increase in body temperature (SIBT), changes in hematologic parameters, and increases in C-reactive protein and succumbed to disease with an average time to death of approximately 73 h following aerosol challenge with B. anthracis Ames spores. The SIBT was used as a trigger to treat with a fully human monoclonal antibody directed at protective antigen (PA). Ninety percent (9/10) of the treated rabbits survived the lethal inhalational challenge of B. anthracis. Further characterization investigated the protective window of opportunity for anti-PA antibody administration up to 12 h post-onset of SIBT. Eighty-three percent (5/6) of the rabbits treated at SIBT and 100% (6/6) of those treated at 6 h after SIBT survived challenge. Only 67% (4/6) of the rabbits treated at 12 h after SIBT survived. The increase in body temperature corresponded with both bacteremia and antigenemia (PA in the blood), indicating that SIBT is a suitable trigger to initiate treatment in a therapeutic model of inhalational anthrax.


Frontiers in Cellular and Infection Microbiology | 2012

Inhalational monkeypox virus infection in cynomolgus macaques.

Roy E. Barnewall; David A. Fisher; Ashley B. Robertson; Pauline A. Vales; Katherine A. Knostman; John E. Bigger

An inhalation exposure system was characterized to deliver aerosolized monkeypox virus (MPXV), and a non-human primate (NHP) inhalation monkeypox model was developed in cynomolgus macaques. A head-only aerosol exposure system was characterized, and two sampling methods were evaluated: liquid impingement via an impinger and impaction via a gelatin filter. The aerosol concentrations obtained with the gelatin filter and impinger were virtually identical, indicating that either method is acceptable for sampling aerosols containing MPXV. The mass median aerodynamic diameter (MMAD) for individual aerosol tests in the aerosol system characterization and the NHP study ranged from 1.08 to 1.15 μm, indicating that the aerosol particles were of a sufficient size to reach the alveoli. Six cynomolgus macaques (four male and two female) were used on study. The animals were aerosol exposed with MPXV and received doses between 2.51 × 104 to 9.28 × 105 plaque forming units (PFUs) inhaled. Four of the six animals died or were euthanized due to their moribund conditions. Both animals that received the lowest exposure doses survived to the end of the observation period. The inhalation LD50 was determined to be approximately 7.8 × 104 pfu inhaled. These data demonstrate that an inhalation MPXV infection model has been developed in the cynomolgus macaque with disease course and lethal dose similar to previously published data.


Clinical and Vaccine Immunology | 2010

Inhalational Botulism in Rhesus Macaques Exposed to Botulinum Neurotoxin Complex Serotypes A1 and B1

Daniel C. Sanford; Roy E. Barnewall; Michelle L. Vassar; Nancy A. Niemuth; Karen Metcalfe; Robert V. House; Ian Henderson; Jeffry D. Shearer

ABSTRACT A recombinant botulinum vaccine (rBV A/B) is being developed for protection against inhalational intoxication with botulinum neurotoxin (BoNT) complex serotype A, subtype A1 (BoNT/A1), and BoNT serotype B, subtype B1 (BoNT/B1). A critical component for evaluating rBV A/B efficacy will be the use of animal models in which the pathophysiology and dose-response relationships following aerosol exposure to well-characterized BoNT are thoroughly understood and documented. This study was designed to estimate inhaled 50% lethal doses (LD50) and to estimate 50% lethal exposure concentrations relative to time (LCt50) in rhesus macaques exposed to well-characterized BoNT/A1 and BoNT/B1. During the course of this study, clinical observations, body weights, clinical hematology results, clinical chemistry results, circulating neurotoxin levels, and telemetric parameters were documented to aid in the understanding of disease progression. The inhaled LD50 and LCt50 for BoNT/A1 and BoNT/B1 in rhesus macaques were determined using well-characterized challenge material. Clinical observations were consistent with the recognized pattern of botulism disease progression. A dose response was demonstrated with regard to the onset of these clinical signs for both BoNT/A1 and BoNT/B1. Dose-related changes in physiologic parameters measured by telemetry were also observed. In contrast, notable changes in body weight, hematology, and clinical chemistry parameters were not observed. Circulating levels of BoNT/B1 were detected in animals exposed to the highest levels of BoNT/B1; however, BoNT/A1 was not detected in the circulation at any aerosol exposure level. The rhesus macaque aerosol challenge model will be used for future evaluations of rBV A/B efficacy against inhalational BoNT/A1 and BoNT/B1 intoxication.


Infection and Immunity | 2013

Pathology and Pathophysiology of Inhalational Anthrax in a Guinea Pig Model

Vladimir Savransky; Daniel C. Sanford; Emily Syar; Jamie L. Austin; Kevin P. Tordoff; Michael S. Anderson; Gregory V. Stark; Roy E. Barnewall; Crystal M. Briscoe; Laurence Lemiale-Biérinx; Sukjoon Park; Boris Ionin; Mario H. Skiadopoulos

ABSTRACT Nonhuman primates (NHPs) and rabbits are the animal models most commonly used to evaluate the efficacy of medical countermeasures against anthrax in support of licensure under the FDAs “Animal Rule.” However, a need for an alternative animal model may arise in certain cases. The development of such an alternative model requires a thorough understanding of the course and manifestation of experimental anthrax disease induced under controlled conditions in the proposed animal species. The guinea pig, which has been used extensively for anthrax pathogenesis studies and anthrax vaccine potency testing, is a good candidate for such an alternative model. This study was aimed at determining the median lethal dose (LD50) of the Bacillus anthracis Ames strain in guinea pigs and investigating the natural history, pathophysiology, and pathology of inhalational anthrax in this animal model following nose-only aerosol exposure. The inhaled LD50 of aerosolized Ames strain spores in guinea pigs was determined to be 5.0 × 104 spores. Aerosol challenge of guinea pigs resulted in inhalational anthrax with death occurring between 46 and 71 h postchallenge. The first clinical signs appeared as early as 36 h postchallenge. Cardiovascular function declined starting at 20 h postexposure. Hematogenous dissemination of bacteria was observed microscopically in multiple organs and tissues as early as 24 h postchallenge. Other histopathologic findings typical of disseminated anthrax included suppurative (heterophilic) inflammation, edema, fibrin, necrosis, and/or hemorrhage in the spleen, lungs, and regional lymph nodes and lymphocyte depletion and/or lymphocytolysis in the spleen and lymph nodes. This study demonstrated that the course of inhalational anthrax disease and the resulting pathology in guinea pigs are similar to those seen in rabbits and NHPs, as well as in humans.


Infection and Immunity | 2012

Pathophysiology of the Rhesus Macaque Model for Inhalational Brucellosis

Lisa N. Henning; Stephen M. Miller; Dennis H. Pak; Amber S. Lindsay; David A. Fisher; Roy E. Barnewall; Crystal M. Briscoe; Michael S. Anderson; Richard L. Warren

ABSTRACT The objective of this study was to characterize the rhesus macaque (RM) as a model for inhalational brucellosis in support of the U.S. Food and Drug Administrations (FDA) Animal Rule. The pathophysiology of chronic Brucella melitensis aerosol infection was monitored in two phases that each occurred over an 8-week time period; dose escalation (8 RMs; targeted doses of 5.0E+03, 5.0E+04, or 5.0E+05 CFU/animal or the unchallenged control) and natural history (12 RMs; targeted dose of 2.50E+05 CFU/animal or the unchallenged control). RMs given an aerosol challenge with B. melitensis developed undulating fevers (6/6 phase I; 8/9 phase II), positive enriched blood cultures (5/10; phase II), and bacterial burdens in tissues starting 14 to 21 days postchallenge (6/6 phase I; 10/10 phase II). In addition, 80% (8/10; phase II) of infected RMs seroconverted 14 to 21 days postchallenge. RMs developed elevations in certain liver enzymes and had an increased inflammatory response by 3 weeks postchallenge as shown by increases in C-reactive protein (6/8) and neopterin (4/8), which correlated with the onset of a fever. As early as 14 days postchallenge, positive liver biopsy specimens were detected (2/8), and ultrasound imaging showed the development of splenomegaly. Finally, histopathologic examination found lesions attributed to Brucella infection in the liver, kidney, lung, and/or spleen of all animals. The disease progression observed with the RMs in this study is analogous to human brucellosis pathophysiology. Thus, the results from this study support the use of the RM as an animal model for inhalational brucellosis to evaluate the efficacy of novel vaccines and therapeutics against B. melitensis.

Collaboration


Dive into the Roy E. Barnewall's collaboration.

Top Co-Authors

Avatar

James E. Estep

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol L. Sabourin

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Nancy A. Niemuth

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Robert E. Hunt

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

April M. Brys

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Brian D. Plikaytis

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Fisher

Battelle Memorial Institute

View shared research outputs
Top Co-Authors

Avatar

Jarad Schiffer

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge