Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy J. Bongaerts is active.

Publication


Featured researches published by Roy J. Bongaerts.


Cellular Microbiology | 2008

During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems

Isabelle Hautefort; Arthur R. Thompson; S. Eriksson-Ygberg; M. L. Parker; Sacha Lucchini; Vittoria Danino; Roy J. Bongaerts; N. Ahmad; Mikael Rhen; Jay C. D. Hinton

The biogenesis of the Salmonella‐containing vacuole within mammalian cells has been intensively studied over recent years. However, the ability of Salmonella to sense and adapt to the intracellular environment of different types of host cells has received much less attention. To address this issue, we report the transcriptome of Salmonella enterica serovar Typhimurium SL1344 within epithelial cells and show comparisons with Salmonella gene expression inside macrophages. We report that S. Typhimurium expresses a characteristic intracellular transcriptomic signature in response to the environments it encounters within different cell types. The signature involves the upregulation of the mgtBC, pstACS and iro genes for magnesium, phosphate and iron uptake, and Salmonella pathogenicity island 2 (SPI2). Surprisingly, in addition to SPI2, the invasion‐associated SPI1 pathogenicity island and the genes involved in flagellar biosynthesis were expressed inside epithelial cells at later stages of the infection, while they were constantly downregulated in macrophage‐like cells. To our knowledge, this is the first report of the simultaneous transcription of all three Type Three Secretion Systems (T3SS) within an intracellular Salmonella population. We discovered that S. Typhimurium strain SL1344 was strongly cytotoxic to epithelial cells after 6 h of infection and hypothesize that the time‐dependent changes in Salmonella gene expression within epithelial cells reflects the bacterial response to host cells that have been injured by the infection process.


Microbiology | 2010

Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri.

Donald A. MacKenzie; Faye Jeffers; Mary L. Parker; Amandine Vibert-Vallet; Roy J. Bongaerts; Stefan Roos; Jens Walter; Nathalie Juge

Mucus-binding proteins (MUBs) have been revealed as one of the effector molecules involved in mechanisms of the adherence of lactobacilli to the host; mub, or mub-like, genes are found in all of the six genomes of Lactobacillus reuteri that are available. We recently reported the crystal structure of a Mub repeat from L. reuteri ATCC 53608 (also designated strain 1063), revealing an unexpected recognition of immunoglobulins. In the current study, we explored the diversity of the ATCC 53608 mub gene, and MUB expression levels in a large collection of L. reuteri strains isolated from a range of vertebrate hosts. This analysis revealed that the MUB was only detectable on the cell surface of two highly related isolates when using antibodies that were raised against the protein. There was considerable variation in quantitative mucus adhesion in vitro among L. reuteri strains, and mucus binding showed excellent correlation with the presence of cell-surface ATCC 53608 MUB. ATCC 53608 MUB presence was further highly associated with the autoaggregation of L. reuteri strains in washed cell suspensions, suggesting a novel role of this surface protein in cell aggregation. We also characterized MUB expression in representative L. reuteri strains. This analysis revealed that one derivative of strain 1063 was a spontaneous mutant that expressed a C-terminally truncated version of MUB. This frameshift mutation was caused by the insertion of a duplicated 13 nt sequence at position 4867 nt in the mub gene, producing a truncated MUB also lacking the C-terminal LPxTG region, and thus unable to anchor to the cell wall. This mutant, designated 1063N (mub-4867(i)), displayed low mucus-binding and aggregation capacities, further providing evidence for the contribution of cell-wall-anchored MUB to such phenotypes. In conclusion, this study provided novel information on the functional attributes of MUB in L. reuteri, and further demonstrated that MUB and MUB-like proteins, although present in many L. reuteri isolates, show a high genetic heterogeneity among strains.


The FASEB Journal | 2009

Recognition of galactan components of pectin by galectin-3

Roy J. Bongaerts; Victor J. Morris

It has been reported that modified forms of pectin possess anticancer activity. To account for this bioactivity, it has been proposed that fragments of pectin molecules can act by binding to and inhibiting the various roles of the mammalian protein galectin 3 (Gal3) in cancer progression and metastasis. Despite this clear molecular hypothesis and evidence for the bioactivity of modified pectin, the structural origins of the “bioactive fragments” of pectin molecules are currently ill defined. By using a combination of fluorescence microscopy, flow cytometry, and force spectroscopy, it has been possible to demonstrate, for the first time, specific binding of a pectin galactan to the recombinant form of human Gal3. Present studies suggest that bioactivity resides in the neutral sugar side chains of pectin polysaccharides and that these components could be isolated and modified to optimize bioactivity.—Gunning, A. P., Bongaerts, R. J. M., Morris, V. J. Recognition of galactan components of pectin by galectin‐3. FASEB J. 23, 415–424 (2009)


BMC Genomics | 2009

The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

Shea Hamilton; Roy J. Bongaerts; Francis Mulholland; Brett Cochrane; Jonathan Porter; Sacha Lucchini; Hilary M. Lappin-Scott; Jay C. D. Hinton

BackgroundBiofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm.ResultsWe have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on SalmonellaP athogenicity I sland 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by exogenous tryptophan or indole.ConclusionsBiofilm growth of S. Typhimurium causes distinct changes in gene and protein expression. Our results show that aromatic amino acids make an important contribution to biofilm formation and reveal a link between SPI2 expression and surface-associated growth in S. Typhimurium.


Methods in Enzymology | 2002

Green fluorescent protein as a marker for conditional gene expression in bacterial cells

Roy J. Bongaerts; Isabelle Hautefort; Julie M. Sidebotham; Jay C. D. Hinton

To date, the majority of studies of bacterial gene expression have been carried out on large communities, as techniques for analysis of expression in individual cells have not been available. Recent developments now allow us to use reporter genes to monitor gene expression in individual bacterial cells. Conventional reporters are not suitable for studies of living single cells. However, variants of GFP have proved to be ideal for the study of development, cell biology, and pathogenesis and are now the reporters of choice for microbial studies. In combination with techniques such as DFI and IVET and the use of flow cytometry and advanced fluorescence microscopy, the latest generation of GFP reporters allows the investigation of gene expression in individual bacterial cells within particular environments. These studies promise to bring a new level of understanding to the fields of bacterial pathogenesis and environmental microbiology.


PLOS ONE | 2013

Spontaneous Mutation Reveals Influence of Exopolysaccharide on Lactobacillus johnsonii Surface Characteristics

Nikki Horn; Udo Wegmann; Enes Dertli; Francis Mulholland; Samuel R. A. Collins; Keith W. Waldron; Roy J. Bongaerts; Melinda J. Mayer; Arjan Narbad

As a competitive exclusion agent, Lactobacillus johnsonii FI9785 has been shown to prevent the colonization of selected pathogenic bacteria from the chicken gastrointestinal tract. During growth of the bacterium a rare but consistent emergence of an altered phenotype was noted, generating smooth colonies in contrast to the wild type rough form. A smooth colony variant was isolated and two-dimensional gel analysis of both strains revealed a protein spot with different migration properties in the two phenotypes. The spot in both gels was identified as a putative tyrosine kinase (EpsC), associated with a predicted exopolysaccharide gene cluster. Sequencing of the epsC gene from the smooth mutant revealed a single substitution (G to A) in the coding strand, resulting in the amino acid change D88N in the corresponding gene product. A native plasmid of L. johnsonii was engineered to produce a novel vector for constitutive expression and this was used to demonstrate that expression of the wild type epsC gene in the smooth mutant produced a reversion to the rough colony phenotype. Both the mutant and epsC complemented strains had increased levels of exopolysaccharides compared to the wild type strain, indicating that the rough phenotype is not solely associated with the quantity of exopolysaccharide. Another gene in the cluster, epsE, that encoded a putative undecaprenyl-phosphate galactosephosphotransferase, was deleted in order to investigate its role in exopolysaccharide biosynthesis. The ΔepsE strain exhibited a large increase in cell aggregation and a reduction in exopolysaccharide content, while plasmid complementation of epsE restored the wild type phenotype. Flow cytometry showed that the wild type and derivative strains exhibited clear differences in their adhesive ability to HT29 monolayers in tissue culture, demonstrating an impact of EPS on surface properties and bacteria-host interactions.


Journal of Biological Chemistry | 2013

Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785.

Enes Dertli; Ian J. Colquhoun; Roy J. Bongaerts; Gwénaëlle Le Gall; Boyan B. Bonev; Melinda J. Mayer; Arjan Narbad

Background: Bacterial cell surface polysaccharides are important in pathogenesis, cell adhesion, and protection against harsh environments. Results: Two novel exopolysaccharide (EPS) structures were identified in Lactobacillus johnsonii. Conclusion: The eps cluster is essential for production of both EPS, but epsE is required only for the heteropolymer. Significance: This study will guide functional analysis of EPS in survival and colonization of gut commensals. Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-α-Glcp-(1–3)-β-Glcp-(1–5)-β-Galf-(1–6)-α-Glcp-(1–4)-β-Galp-(1–4)-β-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (ΔepsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ΔepsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host.


Cell Reports | 2014

A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut.

Régis Stentz; Samantha Osborne; Nikki Horn; Arthur W.H. Li; Isabelle Hautefort; Roy J. Bongaerts; Marine Rouyer; Paul Bailey; Stephen B. Shears; Andrew M. Hemmings; Charles A. Brearley; Simon R. Carding

Summary Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca2+ signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology.


Applied and Environmental Microbiology | 2010

Controlled Release of Protein from Viable Lactococcus lactis Cells

Régis Stentz; Roy J. Bongaerts; Mike Gasson; Claire Shearman

ABSTRACT Overexpression of the lactococcal CsiA protein affects the cell wall integrity of growing cells and leads to leakage of intracellular material. This property was optimized and exploited for the targeted release of biologically active compounds into the extracellular environment, thereby providing a new delivery system for bacterial proteins and peptides. The effects of different levels of CsiA expression on the leakage of endogenous lactate dehydrogenase and nucleic acids were measured and related to the impact of CsiA expression on Lactococcus lactis cell viability and growth. A leakage phenotype was obtained from cells expressing both recombinant and nonrecombinant forms of CsiA. As proof of principle, we demonstrated that CsiA promotes the efficient release of the heterologous Listeria bacteriophage endolysin LM4 in its active form. Under optimized conditions, native and heterologous active-molecule release is possible without affecting cell viability. The ability of CsiA to release intracellular material by controlled lysis without the requirement for an external lytic agent provides a technology for the control of both the extent of lysis and its timing. Taken together, these results demonstrate the potential of this novel approach for applications including product recovery in industrial fermentations, food processing, and medical therapy.


PLOS ONE | 2013

Intestinal Intraepithelial Lymphocyte-Enterocyte Crosstalk Regulates Production of Bactericidal Angiogenin 4 by Paneth cells upon Microbial Challenge

Catherine Walker; Isabelle Hautefort; Jane E. Dalton; Karin Overweg; Charlotte E. Egan; Roy J. Bongaerts; Darren J. Newton; Sheena M. Cruickshank; Elizabeth M. Andrew; Simon R. Carding

Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ-/-) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ-/- mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ-/- mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7+ γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.

Collaboration


Dive into the Roy J. Bongaerts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge