Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy Morello is active.

Publication


Featured researches published by Roy Morello.


Cell | 2006

CRTAP Is Required for Prolyl 3- Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta

Roy Morello; Terry Bertin; Yuqing Chen; John Hicks; Laura Tonachini; Massimiliano Monticone; Patrizio Castagnola; Frank Rauch; Francis H. Glorieux; Janice A. Vranka; Hans Peter Bächinger; James M. Pace; Ulrike Schwarze; Peter H. Byers; MaryAnn Weis; Russell J. Fernandes; David R. Eyre; Zhenqiang Yao; Brendan F. Boyce; Brendan Lee

Prolyl hydroxylation is a critical posttranslational modification that affects structure, function, and turnover of target proteins. Prolyl 3-hydroxylation occurs at only one position in the triple-helical domain of fibrillar collagen chains, and its biological significance is unknown. CRTAP shares homology with a family of putative prolyl 3-hydroxylases (P3Hs), but it does not contain their common dioxygenase domain. Loss of Crtap in mice causes an osteochondrodysplasia characterized by severe osteoporosis and decreased osteoid production. CRTAP can form a complex with P3H1 and cyclophilin B (CYPB), and Crtap-/- bone and cartilage collagens show decreased prolyl 3-hydroxylation. Moreover, mutant collagen shows evidence of overmodification, and collagen fibrils in mutant skin have increased diameter consistent with altered fibrillogenesis. In humans, CRTAP mutations are associated with the clinical spectrum of recessive osteogenesis imperfecta, including the type II and VII forms. Hence, dysregulation of prolyl 3-hydroxylation is a mechanism for connective tissue disease.


Journal of Cell Biology | 2003

Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo.

Qiping Zheng; Guang Zhou; Roy Morello; Yuqing Chen; Xavier Garcia-Rojas; Brendan Lee

The α1(X) collagen gene (Col10a1) is the only known hypertrophic chondrocyte–specific molecular marker. Until recently, few transcriptional factors specifying its tissue-specific expression have been identified. We show here that a 4-kb murine Col10a1 promoter can drive β-galactosidase expression in lower hypertrophic chondrocytes in transgenic mice. Comparative genomic analysis revealed multiple Runx2 (Runt domain transcription factor) binding sites within the proximal human, mouse, and chick Col10a1 promoters. In vitro transfection studies and chromatin immunoprecipitation analysis using hypertrophic MCT cells showed that Runx2 contributes to the transactivation of this promoter via its conserved Runx2 binding sites. When the 4-kb Col10a1 promoter transgene was bred onto a Runx2 +/− background, the reporter was expressed at lower levels. Moreover, decreased Col10a1 expression and altered chondrocyte hypertrophy was also observed in Runx2 heterozygote mice, whereas Col10a1 was barely detectable in Runx2-null mice. Together, these data suggest that Col10a1 is a direct transcriptional target of Runx2 during chondrogenesis.


Nature Genetics | 2001

Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome

Roy Morello; Guang Zhou; Sandra D. Dreyer; Scott J. Harvey; Yoshifumi Ninomiya; Paul S. Thorner; Jeffrey H. Miner; William W. Cole; Andreas Winterpacht; Bernhard Zabel; Kerby C. Oberg; Brendan Lee

Basement membrane (BM) morphogenesis is critical for normal kidney function. Heterotrimeric type IV collagen, composed of different combinations of six α-chains (1–6), is a major matrix component of all BMs (ref. 2). Unlike in other BMs, glomerular BM (GBM) contains primarily the α3(IV) and α4(IV) chains, together with the α5(IV) chain. A poorly understood, coordinated temporal and spatial switch in gene expression from ubiquitously expressed α1(IV) and α2(IV) collagen to the α3(IV), α4(IV) and α5(IV) chains occurs during normal embryogenesis of GBM (ref. 4). Structural abnormalities of type IV collagen have been associated with diverse biological processes including defects in molecular filtration in Alport syndrome, cell differentiation in hereditary leiomyomatosis, and autoimmunity in Goodpasture syndrome; however, the transcriptional and developmental regulation of type IV collagen expression is unknown. Nail patella syndrome (NPS) is caused by mutations in LMX1B, encoding a LIM homeodomain transcription factor. Some patients have nephrosis-associated renal disease characterized by typical ultrastructural abnormalities of GBM (refs. 8,9). In Lmx1b−/− mice, expression of both α(3)IV and α(4)IV collagen is strongly diminished in GBM, whereas that of α1, α2 and α5(IV) collagen is unchanged. Moreover, LMX1B binds specifically to a putative enhancer sequence in intron 1 of both mouse and human COL4A4 and upregulates reporter constructs containing this enhancer-like sequence. These data indicate that LMX1B directly regulates the coordinated expression of α3(IV) and α4(IV) collagen required for normal GBM morphogenesis and that its dysregulation in GBM contributes to the renal pathology and nephrosis in NPS.


Human Mutation | 2008

CRTAP AND LEPRE1 MUTATIONS IN RECESSIVE OSTEOGENESIS IMPERFECTA

Dustin Baldridge; Ulrike Schwarze; Roy Morello; Jennifer Lennington; Terry Bertin; James M. Pace; Melanie Pepin; MaryAnn Weis; David R. Eyre; Jennifer Walsh; Deborah M Lambert; Andrew Green; Haynes Robinson; Melonie Michelson; Gunnar Houge; Carl Lindman; Judith Martin; Jewell C. Ward; Emmanuelle Lemyre; John J. Mitchell; Deborah Krakow; David L. Rimoin; Daniel H. Cohn; Peter H. Byers; Brendan Lee

Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Recently, dysregulation of hydroxylation of a single proline residue at position 986 of both the triple‐helical domains of type I collagen α1(I) and type II collagen α1(II) chains has been implicated in the pathogenesis of recessive forms of OI. Two proteins, cartilage‐associated protein (CRTAP) and prolyl‐3‐hydroxylase‐1 (P3H1, encoded by the LEPRE1 gene) form a complex that performs the hydroxylation and brings the prolyl cis‐trans isomerase cyclophilin‐B (CYPB) to the unfolded collagen. In our screen of 78 subjects diagnosed with OI type II or III, we identified three probands with mutations in CRTAP and 16 with mutations in LEPRE1. The latter group includes a mutation in patients from the Irish Traveller population, a genetically isolated community with increased incidence of OI. The clinical features resulting from CRTAP or LEPRE1 loss of function mutations were difficult to distinguish at birth. Infants in both groups had multiple fractures, decreased bone modeling (affecting especially the femurs), and extremely low bone mineral density. Interestingly, “popcorn” epiphyses may reflect underlying cartilaginous and bone dysplasia in this form of OI. These results expand the range of CRTAP/LEPRE1 mutations that result in recessive OI and emphasize the importance of distinguishing recurrence of severe OI of recessive inheritance from those that result from parental germline mosaicism for COL1A1 or COL1A2 mutations. Hum Mutat 0, 1–8, 2008.


Journal of Clinical Investigation | 2002

Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation

Jeffrey H. Miner; Roy Morello; Kaya L. Andrews; Cong Li; Corinne Antignac; Andrey S. Shaw; Brendan Lee

LMX1B encodes a LIM-homeodomain transcription factor. Mutations in LMX1B cause nail-patella syndrome (NPS), an autosomal dominant disease with skeletal abnormalities, nail hypoplasia, and nephropathy. Expression of glomerular basement membrane (GBM) collagens is reduced in Lmx1b(-/-) mice, suggesting one basis for NPS nephropathy. Here, we show that Lmx1b(-/-) podocytes have reduced numbers of foot processes, are dysplastic, and lack typical slit diaphragms, indicating an arrest in development. Using antibodies to podocyte proteins important for podocyte function, we found that Lmx1b(-/-) podocytes express near-normal levels of nephrin, synaptopodin, ZO-1, alpha3 integrin, and GBM laminins. However, mRNA and protein levels for CD2AP and podocin were greatly reduced, suggesting a cooperative role for these molecules in foot process and slit diaphragm formation. We identified several LMX1B binding sites in the putative regulatory regions of both CD2AP and NPHS2 (podocin) and demonstrated that LMX1B binds to these sequences in vitro and can activate transcription through them in cotransfection assays. Thus, LMX1B regulates the expression of multiple podocyte genes critical for podocyte differentiation and function. Our results indicate that reduced levels of proteins associated with foot processes and the glomerular slit diaphragm likely contribute, along with reduced levels of GBM collagens, to the nephropathy associated with NPS.


Journal of Bone and Mineral Research | 2011

Mutations in SERPINF1 cause osteogenesis imperfecta type VI

Erica P. Homan; Frank Rauch; Ingo Grafe; Caressa Lietman; Jennifer A. Doll; Brian Dawson; Terry Bertin; Dobrawa Napierala; Roy Morello; Richard A. Gibbs; Lisa D. White; Rika Miki; Daniel H. Cohn; Susan E. Crawford; Rose Travers; Francis H. Glorieux; Brendan Lee

Osteogenesis imperfecta (OI) is a spectrum of genetic disorders characterized by bone fragility. It is caused by dominant mutations affecting the synthesis and/or structure of type I procollagen or by recessively inherited mutations in genes responsible for the posttranslational processing/trafficking of type I procollagen. Recessive OI type VI is unique among OI types in that it is characterized by an increased amount of unmineralized osteoid, thereby suggesting a distinct disease mechanism. In a large consanguineous family with OI type VI, we performed homozygosity mapping and next‐generation sequencing of the candidate gene region to isolate and identify the causative gene. We describe loss of function mutations in serpin peptidase inhibitor, clade F, member 1 (SERPINF1) in two affected members of this family and in an additional unrelated patient with OI type VI. SERPINF1 encodes pigment epithelium–derived factor. Hence, loss of pigment epithelium–derived factor function constitutes a novel mechanism for OI and shows its involvement in bone mineralization.


Journal of Bone and Mineral Research | 2008

Mutations in the Insulin-Like Factor 3 Receptor Are Associated With Osteoporosis

Alberto Ferlin; Anastasia Pepe; Lisa Gianesello; Andrea Garolla; Shu Feng; Sandro Giannini; Manuela Zaccolo; Arianna Facciolli; Roy Morello; Alexander I. Agoulnik; Carlo Foresta

Introduction: Insulin‐like factor 3 (INSL3) is produced primarily by testicular Leydig cells. It acts by binding to its specific G protein–coupled receptor RXFP2 (relaxin family peptide 2) and is involved in testicular descent during fetal development. The physiological role of INSL3 in adults is not known, although substantial INSL3 circulating levels are present. The aim of this study was to verify whether reduced INSL3 activity could cause or contribute to some signs of hypogonadism, such as reduced BMD, currently attributed to testosterone deficiency.


Human Molecular Genetics | 2008

Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome

Dobrawa Napierala; Kathy Sam; Roy Morello; Qiping Zheng; Elda Munivez; Ramesh A. Shivdasani; Brendan Lee

Tricho-rhino-phalangeal syndrome (TRPS) is an autosomal dominant craniofacial and skeletal dysplasia that is caused by mutations involving the TRPS1 gene. Patients with TRPS have short stature, hip abnormalities, cone-shaped epiphyses and premature closure of growth plates reflecting defects in endochondral ossification. The TRPS1 gene encodes for the transcription factor TRPS1 that has been demonstrated to repress transcription in vitro. To elucidate the molecular mechanisms underlying skeletal abnormalities in TRPS, we analyzed Trps1 mutant mice (Trps1DeltaGT mice). Analyses of growth plates demonstrated delayed chondrocyte differentiation and accelerated mineralization of perichondrium in Trps1 mutant mice. These abnormalities were accompanied by increased Runx2 and Ihh expression and increased Indian hedgehog signaling. We demonstrated that Trps1 physically interacts with Runx2 and represses Runx2-mediated trans-activation. Importantly, generation of Trps1(DeltaGT/+);Runx2(+/-) double heterozygous mice rescued the opposite growth plate phenotypes of single mutants, demonstrating the genetic interaction between Trps1 and Runx2 transcription factors. Collectively, these data suggest that skeletal dysplasia in TRPS is caused by dysregulation of chondrocyte and perichondrium development partially due to loss of Trps1 repression of Runx2.


Journal of Biological Chemistry | 2010

Ascorbate Synthesis Pathway: DUAL ROLE OF ASCORBATE IN BONE HOMEOSTASIS*

Kenneth H. Gabbay; Kurt M. Bohren; Roy Morello; Terry Bertin; Jeff Liu; Peter Vogel

Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of d-glucuronate to l-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) mice show that the two enzymes, GR and AR, provide ∼85 and ∼15% of l-gulonate, respectively. GRKO/ARKO double knock-out mice are unable to synthesize ASC (>95% ASC deficit) and develop scurvy. The GRKO mice (∼85% ASC deficit) develop and grow normally when fed regular mouse chow (ASC content = 0) but suffer severe osteopenia and spontaneous fractures with stresses that increase ASC requirements, such as pregnancy or castration. Castration greatly increases osteoclast numbers and activity in GRKO mice and promotes increased bone loss as compared with wild-type controls and additionally induces proliferation of immature dysplastic osteoblasts likely because of an ASC-sensitive block(s) in early differentiation. ASC and the antioxidants pycnogenol and resveratrol block osteoclast proliferation and bone loss, but only ASC feeding restores osteoblast differentiation and prevents their dysplastic proliferation. This is the first in vivo demonstration of two independent roles for ASC as an antioxidant suppressing osteoclast activity and number as well as a cofactor promoting osteoblast differentiation. Although humans have lost the ability to synthesize ASC, our mouse models suggest the mechanisms by which suboptimal ASC availability facilitates the development of osteoporosis, which has important implications for human osteoporosis.


Bone | 2010

CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII

Nadja Fratzl-Zelman; Roy Morello; Brendan Lee; Frank Rauch; Francis H. Glorieux; Barbara M Misof; Klaus Klaushofer; Paul Roschger

Cartilage-associated protein (CRTAP) is an essential cofactor for the proper post-translational chain modification and collagen folding. CRTAP mutations lead mice (Crtap-/- mice) and humans (OI type VII) to a severe/lethal osteochondrodystrophy; patients have fractures at birth, deformities of the lower extremities and impaired growth. The consequences of CRTAP deficiency on intrinsic bone material properties are still unknown. In the present study we evaluated bone quality based on quantitative backscattered electron imaging (qBEI) to assess bone mineralization density distribution (BMDD) in femurs from 12 weeks old Crtap-/- mice and transiliac bone biopsies from 4 children with hypomorphic mutations and having residual CRTAP expression. The analyses revealed in the bone matrix of Crtap-/- animals and OI type VII patients a significant increase in mean (CaMean) and most frequent mineral concentration (CaPeak) compared to wild-type littermates and control children, respectively. The heterogeneity of mineralization (CaWidth) was reduced in Crtap-/- mice but normal in OI type VII patients. The fraction of highly mineralized bone matrix (CaHigh) was remarkably increased in the patients: cancellous bone from 2.1 to 3.7 times and cortical bone from 7.6 to 25.5 times, associated with an increased persistence of primary bone. In conclusion, the BMDD data show that CRTAP deficiency results in a shift towards higher mineral content of the bone matrix similar to classical OI with collagen gene mutations. Our data further suggest altered mineralization kinetics resulting ultimately in an overall elevated tissue mineralization density. Finally, in OI type VII patients the increased portion of primary bone is most likely reflecting a disturbed bone development.

Collaboration


Dive into the Roy Morello's collaboration.

Top Co-Authors

Avatar

Brendan Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David R. Eyre

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Terry Bertin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

MaryAnn Weis

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Francis H. Glorieux

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Frank Rauch

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Milena Dimori

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuqing Chen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Elda Munivez

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Erica P. Homan

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge