Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roy Ostensen is active.

Publication


Featured researches published by Roy Ostensen.


Nature | 2007

A giant planet orbiting the 'extreme horizontal branch' star V 391 Pegasi

R. Silvotti; S. Schuh; R. Janulis; J.-E. Solheim; Stefano Bernabei; Roy Ostensen; Terry D. Oswalt; I Bruni; R Gualandi; Alfio Bonanno; G Vauclair; M. D. Reed; Cathy W. S. Chen; E. M. Leibowitz; M. Paparó; A. Baran; S. Charpinet; N Dolez; S. D. Kawaler; D. W. Kurtz; P Moskalik; R Riddle; S. Zola

After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2MJupiter) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung–Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.


Nature | 2011

A compact system of small planets around a former red-giant star

S. Charpinet; G. Fontaine; P. Brassard; Elizabeth M. Green; Valérie Van Grootel; Suzanna K. Randall; R. Silvotti; A. Baran; Roy Ostensen; S. D. Kawaler; J. H. Telting

Planets that orbit their parent star at less than about one astronomical unit (1 au is the Earth–Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have revealed the existence of post-red-giant host stars with giant planets orbiting as close as 0.116 au or with brown dwarf companions in tight orbits, showing that these bodies can survive engulfment. What has remained unclear is whether planets can be dragged deeper into the red-giant envelope without being disrupted and whether the evolution of the parent star itself could be affected. Here we report the presence of two nearly Earth-sized bodies orbiting the post-red-giant, hot B subdwarf star KIC 05807616 at distances of 0.0060 and 0.0076 au, with orbital periods of 5.7625 and 8.2293 hours, respectively. These bodies probably survived deep immersion in the former red-giant envelope. They may be the dense cores of evaporated giant planets that were transported closer to the star during the engulfment and triggered the mass loss necessary for the formation of the hot B subdwarf, which might also explain how some stars of this type did not form in binary systems.


Astronomy and Astrophysics | 2001

Detection of the optical afterglow of GRB 000630: Implications for dark bursts ?

Johan Peter Uldall Fynbo; B. L. Jensen; J. Gorosabel; J. Hjorth; H. Pedersen; P. Møller; Terence S. Abbott; A. J. Castro-Tirado; D. M. Delgado; J. Greiner; Arne A. Henden; A. Magazzù; N. Masetti; S. Merlino; J. Masegosa; Roy Ostensen; E. Palazzi; E. Pian; He Schwarz; T. L. Cline; C. Guidorzi; J Goldsten; K. Hurley; E. Mazets; T McClanahan; E. Montanari; R. Starr; J Trombka

We present the discovery of the optical transient of the long{duration gamma-ray burst GRB 000630. The optical transient was detected with the Nordic Optical Telescope 21.1 hours after the burst. At the time of discovery the magnitude of the transient was R =2 3:04 0:08. The transient displayed a power-law decline characterized by a decay slope of = 1:035 0:097. A deep image obtained 25 days after the burst shows no indication of a contribution from a supernova or a host galaxy at the position of the transient. The closest detected galaxy is a R =2 4:68 0:15 galaxy 2.0 arcsec north of the transient. The magnitudes of the optical afterglows of GRB 980329, GRB 980613 and GRB 000630 were all R > 23 less than 24 hours from the burst epoch. We discuss the implications of this for our understanding of GRBs without detected optical transients. We conclude that i) based on the gamma-ray properties of the current sample we cannot conclude that GRBs with no detected OTs belong to another class of GRBs than GRBs with detected OTs and ii) the majority (>75%) of GRBs for which searches for optical afterglow have been unsuccessful are consistent with no detection if they were similar to bursts like GRB 000630 at optical wavelengths.


Astronomy and Astrophysics | 2009

Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators

H. Van Winckel; T. Lloyd Evans; Maryline Briquet; P. De Cat; P. Degroote; W. De Meester; J. De Ridder; Pieter Deroo; M. Desmet; R. Drummond; L. Eyer; Martin A. T. Groenewegen; Katrien Kolenberg; D. Kilkenny; D. Ladjal; K. Lefever; Thomas Maas; F. Marang; Peter Martinez; Roy Ostensen; Gert Raskin; M. Reyniers; P. Royer; S. Saesen; K. Uytterhoeven; J. Vanautgaerden; B. Vandenbussche; F. van Wyk; M. Vučković; C. Waelkens

Context. The influence of binarity on the late stages of stellar evolut ion. Aims. While the first binary post-AGB stars were serendipitously d iscovered, the distinct characteristics of their Spectral Energy Distribution (SED) allowed us to launch a more systematic search for binaries. We selected post-AGB objects which show a broad dust excess often starting already at H or K, pointing to the presence of a gravitationally bound dusty disc in the system. We started a very extensive multi-wavelength study of those systems and here we report on our radial velocity and photometric monitoring results for six stars of early F type, which are pulsators of small amplitude. Methods. To determine the radial velocity of low signal-to-noise time-series, we constructed dedicated auto-correlation masks based on high signal-to-noise spectra, used in our published chemical studies. The radial velocity variations were subjecte d to detailed analysis to differentiate between pulsational variability and variabilit y due to orbital motion. When available, the photometric monitoring data were used to complement the time series of radial velocity data and to establish the nature of the pulsation. Finally orbital minimalisation was performed to constrain the orbital elements. Results. All of the six objects are binaries, with orbital periods ran ging from 120 to 1800 days. Five systems have non-circular orbits. The mass functions range from 0.004 to 0.57 M⊙ and the companions are likely unevolved objects of (very) low initial mass. We argue that these binaries must have been subject to severe binary interaction when the primary was a cool supergiant. Although the origin of the circumstellar disc is not well understood, the disc is generally believed to be formed during this strong interaction phase. The eccentric orbits of these highly evolved objects remain poorly understood. In one object the line-of-sight is grazi ng the edge of the puffed-up inner rim of the disc. Conclusions. These results corroborate our earlier statement that evolved objects in binary stars create a Keplerian dusty circumbinary disc. With the measured orbits and mass functions we conclude that the circumbinary discs seem to have a major impact on the evolution of a significant fraction of binary systems.


Monthly Notices of the Royal Astronomical Society | 2010

First Kepler results on compact pulsators – I. Survey target selection and the first pulsators

Roy Ostensen; R. Silvotti; S. Charpinet; R. Oreiro; G. Handler; Elizabeth M. Green; S. Bloemen; Ulrich Heber; B. T. Gänsicke; T. R. Marsh; D. W. Kurtz; J. H. Telting; M. D. Reed; S. D. Kawaler; Conny Aerts; C. Rodríguez-López; M. Vučković; T. A. Ottosen; T. Liimets; A. C. Quint; Valérie Van Grootel; Suzanna K. Randall; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard; William J. Borucki; David G. Koch; Elisa V. Quintana

We present results from the first two quarters of a survey to search for pulsations in compact stellar objects with the Kepler spacecraft. The survey sample and the various methods applied in its compilation are described, and spectroscopic observations are presented to separate the objects into accurate classes. From the Kepler photometry we clearly identify nine compact pulsators and a number of interesting binary stars. Of the pulsators, one shows the strong, rapid pulsations typical of a V361 Hya-type sdB variable (sdBV); seven show long-period pulsation characteristics of V1093 Her-type sdBVs; and one shows low-amplitude pulsations with both short and long periods. We derive effective temperatures and surface gravities for all the subdwarf B stars in the sample and demonstrate that below the boundary region where hybrid sdB pulsators are found, all our targets are pulsating. For the stars hotter than this boundary temperature a low fraction of strong pulsators (<10 per cent) is confirmed. Interestingly, the short-period pulsator also shows a low-amplitude mode in the long-period region, and several of the V1093 Her pulsators show low-amplitude modes in the short-period region, indicating that hybrid behaviour may be common in these stars, also outside the boundary temperature region where hybrid pulsators have hitherto been found.


Monthly Notices of the Royal Astronomical Society | 2010

Kepler observations of the beaming binary KPD 1946+4340

S. Bloemen; T. R. Marsh; Roy Ostensen; S. Charpinet; G. Fontaine; P. Degroote; Ulrich Heber; S. D. Kawaler; Conny Aerts; Elizabeth M. Green; J. H. Telting; P. Brassard; B. T. Gänsicke; G. Handler; D. W. Kurtz; R. Silvotti; Valérie Van Grootel; Johan E. Lindberg; T. Pursimo; P. A. Wilson; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard; William J. Borucki; David G. Koch; J. M. Jenkins; Todd C. Klaus

The Kepler Mission has acquired 33.5 d of continuous 1-min photometry of KPD 1946+4340, a short-period binary system that consists of a subdwarf B star (sdB) and a white dwarf. In the light curve, eclipses are clearly seen, with the deepest occurring when the compact white dwarf crosses the disc of the sdB (0.4 per cent) and the more shallow ones (0.1 per cent) when the sdB eclipses the white dwarf. As expected, the sdB is deformed by the gravitational field of the white dwarf, which produces an ellipsoidal modulation of the light curve. Spectacularly, a very strong Doppler beaming (also known as Doppler boosting) effect is also clearly evident at the 0.1 per cent level. This originates from the sdB’s orbital velocity, which we measure to be 164.0 ± 1. 9k m s −1 from supporting spectroscopy. We present light-curve models that account for all these effects, as well as gravitational lensing, which decreases the apparent radius of the white dwarf by about 6 per cent, when it eclipses the sdB. We derive system parameters and uncertainties from the light curve using Markov chain Monte Carlo simulations. Adopting a theoretical white dwarf mass–radius relation, the mass of the subdwarf is found ,


Monthly Notices of the Royal Astronomical Society | 2011

Kepler observations of the variability in B-type stars

L. A. Balona; Andrzej Pigulski; P. De Cat; G. Handler; J. Gutiérrez-Soto; C. A. Engelbrecht; F. A. M. Frescura; Maryline Briquet; J. Cuypers; Jadwiga Daszyńska-Daszkiewicz; P. Degroote; R. J. Dukes; R. A. García; Elizabeth M. Green; Ulrich Heber; S. D. Kawaler; H. Lehmann; B. Leroy; J. Molenda-Żakowicz; C. Neiner; A. Noels; J. Nuspl; Roy Ostensen; D. Pricopi; Ian W. Roxburgh; Sébastien Salmon; Myron A. Smith; J. C. Suárez; Marian Doru Suran; R. Szabó

The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies, characteristic of slowly pulsating B (SPB) stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/β Cephei (β Cep) hybrids. In all cases, the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the β Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence for pulsating stars between the cool edge of the SPB and the hot edge of the δ Sct instability strips. None of the stars shows the broad features which can be attributed to stochastically excited modes as recently proposed. Among our sample of B stars are two chemically peculiar stars, one of which is a HgMn star showing rotational modulation in the light curve.


Astronomy and Astrophysics | 2014

Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry : A sample study and the analysis of KIC 5006817

P. G. Beck; K. Hambleton; J. Vos; T. Kallinger; S. Bloemen; A. Tkachenko; R. A. García; Roy Ostensen; Conny Aerts; D. W. Kurtz; J. De Ridder; S. Hekker; K. Pavlovski; S. Mathur; K. De Smedt; A. Derekas; E. Corsaro; B. Mosser; H. Van Winckel; Daniel Huber; P. Degroote; G. R. Davies; Andrej Prsa; J. Debosscher; Y. Elsworth; P. Nemeth; Lionel Siess; V. S. Schmid; P. I. Pápics; B. L. de Vries

Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e= 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29± 0.03 M . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e = 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29 ± 0.03 M� . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.


Astronomy and Astrophysics | 2011

The MUCHFUSS project – searching for hot subdwarf binaries with massive unseen companions - Survey, target selection and atmospheric parameters

S. Geier; H. Hirsch; A. Tillich; P. F. L. Maxted; S. J. Bentley; Roy Ostensen; Ulrich Heber; B. T. Gänsicke; T. R. Marsh; R. Napiwotzki; B. N. Barlow; S. J. O’Toole

The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding sdBs with compact companions like supermassive white dwarfs (M > 1.0 M� ), neutron stars or black holes. The existence of such systems is predicted by binary evolution theory and recent discoveries indicate that they are likely to exist in our Galaxy. A determination of the orbital parameters is sufficient to put a lower limit on the companion mass by calculating the binary mass function. If this lower limit exceeds the Chandrasekhar mass and no sign of a companion is visible in the spectra, the existence of a massive compact companion is proven without the need for any additional assumptions. We identified about 1100 hot subdwarf stars from the SDSS by colour selection and visual inspection of their spectra. Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. In total 127 radial velocity variable subdwarfs have been discovered. Binaries with high RV shifts and binaries with moderate shifts within short timespans have the highest probability of hosting massive compact companions. Atmospheric parameters of 69 hot subdwarfs in these binary systems have been determined by means of a quantitative spectral analysis. The atmospheric parameter distribution of the selected sample does not differ from previously studied samples of hot subdwarfs. The systems are considered the best candidates to search for massive compact companions by follow-up time resolved spectroscopy.


Monthly Notices of the Royal Astronomical Society | 2010

2M1938+4603: a rich, multimode pulsating sdB star with an eclipsing dM companion observed with Kepler

Roy Ostensen; Elizabeth M. Green; S. Bloemen; T. R. Marsh; J. Laird; M. Morris; E. Moriyama; Raquel Oreiro; M. D. Reed; Steven D. Kawaler; Conny Aerts; M. Vučković; P. Degroote; J. H. Telting; Hans Kjeldsen; R. L. Gilliland; Jørgen Christensen-Dalsgaard; William J. Borucki; David G. Koch

2M1938+4603 (KIC 9472174) displays a spectacular light curve dominated by a strong reflection effect and rather shallow, grazing eclipses. The orbital period is 0.126 d, the second longest period yet found for an eclipsing sdB+dM, but still close to the minimum 0.1-d period among such systems. The phase-folded Kepler light curve was used to detrend the orbital effects from the data set. The amplitude spectrum of the residual light curve reveals a rich collection of pulsation peaks spanning frequencies from similar to 50 to 4500 mu Hz. The presence of a complex pulsation spectrum in both the p- and g-mode regions has never before been reported in a compact pulsator. Eclipsing sdB+dM stars are very rare, with only seven systems known and only one with a pulsating primary. Pulsating stars in eclipsing binaries are especially important since they permit masses derived from seismological model fits to be cross-checked with orbital mass constraints. We present a first analysis of this star based on the Kepler 9.7-d commissioning light curve and extensive ground-based photometry and spectroscopy that allow us to set useful bounds on the system parameters. We derive a radial-velocity amplitude K-1 = 65.7 +/- 0.6 km s(-1), inclination angle i = 69 degrees.45 +/- 0 degrees.20, and find that the masses of the components are M-1 = 0.48 +/- 0.03 M-circle dot and M-2 = 0.12 +/- 0.01 M-circle dot

Collaboration


Dive into the Roy Ostensen's collaboration.

Top Co-Authors

Avatar

M. D. Reed

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

Ulrich Heber

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Bloemen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Conny Aerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge