Rozanne Arulanandam
Ottawa Hospital Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rozanne Arulanandam.
Oncogene | 2004
Adina Vultur; Jun Cao; Rozanne Arulanandam; James Turkson; Richard Jove; Peter A. Greer; Andrew W. B. Craig; Bruce E. Elliott; Leda Raptis
Stat3 (signal transducer and activator of transcription-3) activity is required for transformation by a number of oncogenes, while a constitutively active form of Stat3 alone is sufficient to induce neoplastic transformation. Although in most instances Stat3 is growth-promoting, the impact of cell density on Stat3 activation status and the biological importance of Stat3 during growth arrest have not been characterized. Previous results indicated that cell density alters tyrosine phosphorylation levels of cultured cells. Since signalling through Stat3 is determined by a key phosphorylation at tyr705, we examined the effects of cell density upon Stat3 activity in normal breast epithelial cells, breast carcinoma lines and normal mouse fibroblasts. Intriguingly, the results revealed a dramatic increase in Stat3, tyr705 phosphorylation and activity with cell density, which gradually declined at later stages. This activation was dependent upon cell–cell contact, since it was eliminated if cell adhesion was disrupted through calcium chelation, while it was reinstated through cell aggregation. Furthermore, this activation was suppressed following inhibition of JAKs (Janus kinases) but not inhibition of Fer, IGF1-R, or kinases of the c-Src family. On the other hand, constitutively active Stat3 in carcinoma lines, known to harbor activated Src, was blocked by pharmacological inhibitors of Src as well as JAKs. These results point to the existence of two distinct pathways of Stat3 activation in breast carcinomas, based on Src dependence. More importantly, our results suggest that Stat3 activity is upregulated during the confluence-mediated growth arrest by a signalling mechanism that requires JAKs.
Cancer Research | 2013
Caroline J. Breitbach; Rozanne Arulanandam; Naomi De Silva; Steve H. Thorne; Richard H. Patt; Manijeh Daneshmand; Anne Moon; Carolina S. Ilkow; James R. Burke; Tae-Ho Hwang; Jeong Heo; Mong Cho; Hannah Chen; Fernando A. Angarita; Christina L. Addison; J. Andrea McCart; John C. Bell; David Kirn
Efforts to selectively target and disrupt established tumor vasculature have largely failed to date. We hypothesized that a vaccinia virus engineered to target cells with activation of the ras/MAPK signaling pathway (JX-594) could specifically infect and express transgenes (hGM-CSF, β-galactosidase) in tumor-associated vascular endothelial cells in humans. Efficient replication and transgene expression in normal human endothelial cells in vitro required either VEGF or FGF-2 stimulation. Intravenous infusion in mice resulted in virus replication in tumor-associated endothelial cells, disruption of tumor blood flow, and hypoxia within 48 hours; massive tumor necrosis ensued within 5 days. Normal vessels were not affected. In patients treated with intravenous JX-594 in a phase I clinical trial, we showed dose-dependent endothelial cell infection and transgene expression in tumor biopsies of diverse histologies. Finally, patients with advanced hepatocellular carcinoma, a hypervascular and VEGF-rich tumor type, were treated with JX-594 on phase II clinical trials. JX-594 treatment caused disruption of tumor perfusion as early as 5 days in both VEGF receptor inhibitor-naïve and -refractory patients. Toxicities to normal blood vessels or to wound healing were not evident clinically or on MRI scans. This platform technology opens up the possibility of multifunctional engineered vaccinia products that selectively target and infect tumor-associated endothelial cells, as well as cancer cells, resulting in transgene expression, vasculature disruption, and tumor destruction in humans systemically.
Molecular Therapy | 2012
Chantal G Lemay; Julia Rintoul; Agnieszka Kus; Jennifer M Paterson; Vanessa Garcia; Theresa Falls; Lisa Ferreira; Byram W. Bridle; David P. Conrad; Vera Tang; Jean-Simon Diallo; Rozanne Arulanandam; Fabrice Le Boeuf; Kenneth Garson; Barbara C. Vanderhyden; David F. Stojdl; Brian D. Lichty; Harold Atkins; Kelley Parato; John C. Bell; Rebecca C. Auer
Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSVs extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.
Molecular Cancer Research | 2009
Rozanne Arulanandam; Adina Vultur; Jun Cao; Esther Carefoot; Bruce E. Elliott; Peter Truesdell; Lionel Larue; Hélène Feracci; Leda Raptis
Signal transducer and activator of transcription-3 (Stat3) is activated by a number of receptor and nonreceptor tyrosine kinases, whereas a constitutively active form of Stat3 alone is sufficient to induce neoplastic transformation. In the present report, we show that Stat3 can also be activated through homophilic interactions by the epithelial (E)-cadherin. Indeed, by plating cells onto surfaces coated with fragments encompassing the two outermost domains of this cadherin, we clearly show that cadherin engagement can activate Stat3, even in the absence of direct cell-to-cell contact. Most importantly, our results also reveal for the first time an unexpected and dramatic surge in total Rac1 and Cdc42 protein levels triggered by cadherin engagement and an increase in Rac1 and Cdc42 activity, which is responsible for the Stat3 stimulation observed. Inhibition of cadherin interactions using a peptide, a soluble cadherin fragment, or genetic ablation induced apoptosis, points to a significant role of this pathway in cell survival signaling, a finding that could also have important therapeutic implications. (Mol Cancer Res 2009;7(8):1310–27)
Cancer Cell | 2015
Rozanne Arulanandam; Cory Batenchuk; Fernando A. Angarita; Kathryn Ottolino-Perry; Sophie Cousineau; Amelia Mottashed; Emma Burgess; Theresa Falls; Naomi De Silva; Jovian Tsang; Grant A. Howe; Marie-Claude Bourgeois-Daigneault; David P. Conrad; Manijeh Daneshmand; Caroline J. Breitbach; David Kirn; Leda Raptis; Subash Sad; Harold Atkins; Michael S. Huh; Jean-Simon Diallo; Brian D. Lichty; Carolina S. Ilkow; Fabrice Le Boeuf; Christina L. Addison; J. Andrea McCart; John C. Bell
Oncolytic viruses designed to attack malignant cells can in addition infect and destroy tumor vascular endothelial cells. We show here that this expanded tropism of oncolytic vaccinia virus to the endothelial compartment is a consequence of VEGF-mediated suppression of the intrinsic antiviral response. VEGF/VEGFR2 signaling through Erk1/2 and Stat3 leads to upregulation, nuclear localization, and activation of the transcription repressor PRD1-BF1/Blimp1. PRD1-BF1 does not contribute to the mitogenic effects of VEGF, but directly represses genes involved in type I interferon (IFN)-mediated antiviral signaling. In vivo suppression of VEGF signaling diminishes PRD1-BF1/Blimp1 expression in tumor vasculature and inhibits intravenously administered oncolytic vaccinia delivery to and consequent spread within the tumor.
Experimental Cell Research | 2010
Rozanne Arulanandam; Mulu Geletu; Hélène Feracci; Leda Raptis
Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac(V12)), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac(V12) with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac(V12)-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac(V12) is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac(V12) expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac(V12). The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac(V12), as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.
Nature Communications | 2015
Rozanne Arulanandam; Cory Batenchuk; Oliver Varette; Chadi Zakaria; Vanessa Garcia; Nicole E. Forbes; Colin Davis; Ramya Krishnan; Raunak Karmacharya; Julie Cox; Anisha Sinha; Andrew Babawy; Katherine Waite; Erica Weinstein; Theresa Falls; Andrew Chen; Jeff Hamill; Naomi De Silva; David P. Conrad; Harold Atkins; Kenneth Garson; Carolina S. Ilkow; Mads Kærn; Barbara C. Vanderhyden; Nahum Sonenberg; Tommy Alain; Fabrice Le Boeuf; John C. Bell; Jean-Simon Diallo
In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes.
Biochimica et Biophysica Acta | 2013
Mulu Geletu; Rozanne Arulanandam; S. Chevalier; B. Saez; Lionel Larue; Hélène Feracci; Leda Raptis
Stat3 (Signal Transducer and Activator of Transcription-3) is activated by a number of receptor and nonreceptor tyrosine kinases. We recently demonstrated that engagement of E-cadherin, a calcium-dependent, cell to cell adhesion molecule which is often required for cells to remain tightly associated within the epithelium, also activates Stat3. We now examined the effect of two other classical cadherins, cadherin-11 and N-cadherin, whose expression often correlates with the epithelial to mesenchymal transition occurring in metastasis of carcinoma cells, upon Stat3 phosphorylation and activity. Our results indicate that engagement of these two cadherins also, can trigger a dramatic surge in Stat3 activity. This activation occurs through upregulation of members of the IL6 family of cytokines, and it is necessary for cell survival, proliferation and migration. Interestingly, our results also demonstrate for the first time that, in sharp contrast to Stat3, the activity of Erk (Extracellular Signal Regulated kinase) was unaffected by cadherin-11 engagement. Further examination indicated that, although IL6 was able to activate Erk in sparsely growing cells, IL6 could not induce an increase in Erk activity levels in densely growing cultures. Most importantly, cadherin-11 knock-down did allow Erk activation by IL6 at high densities, indicating that it is indeed cadherin engagement that prevents Erk activation by IL6. The fact that the three classical cadherins tested so far, E-cadherin, N-cadherin and cadherin11, which are present in essentially all tissues, actually activate Stat3 regardless of their role in metastasis, argues for Stat3 as a central survival, rather than invasion factor.
DNA and Cell Biology | 2009
Mulu Geletu; Chrystele Chaize; Rozanne Arulanandam; Adina Vultur; Claudia M. Kowolik; Aikaterini Anagnostopoulou; Richard Jove; Leda Raptis
Neoplastic transformation by oncogenes such as activated Src is known to suppress gap junctional, intercellular communication (GJIC). One of the Src effector pathways leading to GJIC suppression and transformation is the Ras/Raf/Mek/Erk, so that inhibition of this pathway in vSrc-transformed cells restores GJIC. A distinct Src downstream effector required for neoplasia is the signal transducer and activator of transcription-3 (Stat3). To examine the role of Stat3 upon the Src-mediated, GJIC suppression, Stat3 was downregulated in rat liver epithelial cells expressing activated Src through treatment with the CPA7, Stat3 inhibitor, or through infection with a retroviral vector expressing a Stat3-specific shRNA. GJIC was examined by electroporating the fluorescent dye, Lucifer yellow, into cells grown on two coplanar electrodes of electrically conductive, optically transparent, indium-tin oxide, followed by observation of the migration of the dye to the adjacent, nonelectroporated cells under fluorescence illumination. The results demonstrate that, contrary to inhibition of the Ras pathway, Stat3 inhibition in cells expressing activated Src does not restore GJIC. On the contrary, Stat3 inhibition in normal cells with high GJIC levels eliminated junctional permeability. Therefore, Stat3s function is actually required for the maintenance of junctional permeability, although Stat3 generally promotes growth and in an activated form can act as an oncogene.
International Journal of Cancer | 2017
Fabrice Le Boeuf; Mohammed Selman; Hwan Hee Son; Anabel Bergeron; Andrew Chen; Jovian Tsang; Derek Butterwick; Rozanne Arulanandam; Nicole E. Forbes; Fanny Tzelepis; John C. Bell; Joel Werier; Hesham Abdelbary; Jean-Simon Diallo
The poor prognosis of patients with advanced bone and soft‐tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre‐clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side‐by‐side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes‐simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long‐lasting cures in sarcoma‐bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1‐based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy.