Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rozlyn F. Young is active.

Publication


Featured researches published by Rozlyn F. Young.


Aquatic Toxicology | 2011

Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters.

Richard Kavanagh; Richard A. Frank; Ken D. Oakes; Mark R. Servos; Rozlyn F. Young; Phillip M. Fedorak; Michael D. MacKinnon; Keith R. Solomon; D. George Dixon; Glen Van Der Kraak

Large volumes of fluid tailings are generated during the extraction of bitumen from oil sands. As part of their reclamation plan, oil sands operators in Alberta propose to transfer these fluid tailings to end pit lakes and, over time, these are expected to develop lake habitats with productive capabilities comparable to natural lakes in the region. This study evaluates the potential impact of various oil sands process-affected waters (OSPW) on the reproduction of adult fathead minnow (Pimephales promelas) under laboratory conditions. Two separate assays with aged OPSW (>15 years) from the experimental ponds at Syncrude Canada Ltd. showed that water containing high concentrations of naphthenic acids (NAs; >25 mg/l) and elevated conductivity (>2000 μS/cm) completely inhibited spawning of fathead minnows and reduced male secondary sexual characteristics. Measurement of plasma sex steroid levels showed that male fathead minnows had lower concentrations of testosterone and 11-ketotestosterone whereas females had lower concentrations of 17β-estradiol. In a third assay, fathead minnows were first acclimated to the higher salinity conditions typical of OSPW for several weeks and then exposed to aged OSPW from Suncor Energy Inc. (NAs ∼40 mg/l and conductivity ∼2000 μS/cm). Spawning was significantly reduced in fathead minnows held in this effluent and male fathead minnows had lower concentrations of testosterone and 11-ketotestosterone. Collectively, these studies demonstrate that aged OSPW has the potential to negatively affect the reproductive physiology of fathead minnows and suggest that aquatic habitats with high NAs concentrations (>25 mg/l) and conductivities (>2000 μS/cm) would not be conducive for successful fish reproduction.


Aquatic Toxicology | 2012

Fathead minnow (Pimephales promelas) reproduction is impaired when exposed to a naphthenic acid extract

Richard Kavanagh; Richard A. Frank; B. Kent Burnison; Rozlyn F. Young; Phillip M. Fedorak; Keith R. Solomon; Glen Van Der Kraak

Previous studies have demonstrated that oil sands process-affected water (OSPW) impairs the reproduction of fish and that naphthenic acids (NAs), a natural constituent of oil sands, are suspected of being responsible. This study evaluates the potential impact of NAs on the reproduction of adult fathead minnows (Pimephales promelas) under laboratory conditions. Fathead minnows exposed to a 10 mg/l naphthenic acid extract (NAE) for 21 days spawned fewer eggs and males had reduced expression of secondary sexual characteristics. Male fathead minnows exposed to a 5 mg/l NAE had lower plasma levels of 11-ketotestosterone whereas those exposed to a 10 mg/l NAE had lower concentrations of both testosterone and 11-ketotestosterone. Since OSPW also contains high concentrations of salts, this study also investigated whether they modify the toxicity of NAEs. Spawning was significantly reduced in fathead minnows exposed to a 10 mg/l NAE alone and in combination with NaHCO₃ (700 mg/l), typical of concentrations in OSPW(.) Interestingly, the addition of NaHCO₃ reduced the inhibitory effects of the NAE on the numbers of reproductive tubercles and plasma testosterone levels. Further studies showed that NaHCO₃ acted by reducing the uptake of the NAE to the fish. NaHCO₃ but not NaCl or Na₂SO₄ reduced the acute toxic effects of the NAE on fathead minnow embryo and larvae mortality. Collectively, these studies show that the NAs in OSPW have the potential to negatively affect reproduction in fathead minnows and that HCO₃⁻ reduces the acute and chronic toxicity of NAs.


Chemosphere | 2008

Comparison of GC–MS and FTIR methods for quantifying naphthenic acids in water samples

Angela C. Scott; Rozlyn F. Young; Phillip M. Fedorak

The extraction of bitumen from the oil sands in Canada releases toxic naphthenic acids into the process-affected waters. The development of an ideal analytical method for quantifying naphthenic acids (general formula C(n)H(2n+Z)O(2)) has been impeded by the complexity of these mixtures and the challenges of differentiating naphthenic acids from other naturally-occurring organic acids. The oil sands industry standard FTIR method was compared with a newly-developed GC-MS method. Naphthenic acids concentrations were measured in extracts of surface and ground waters from locations within the vicinity of and away from the oil sands deposits and in extracts of process-affected waters. In all but one case, FTIR measurements of naphthenic acids concentrations were greater than those determined by GC-MS. The detection limit of the GC-MS method was 0.01 mg L(-1) compared to 1 mg L(-1) for the FTIR method. The results indicated that the GC-MS method is more selective for naphthenic acids, and that the FTIR method overestimates their concentrations.


Frontiers in Microbiology | 2014

Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

Tariq Siddique; Petr Kuznetsov; Alsu Kuznetsova; Nicholas Arkell; Rozlyn F. Young; Carmen Li; Selma E. Guigard; Eleisha Underwood; Julia M. Foght

Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.


Chemosphere | 2008

Estimating naphthenic acids concentrations in laboratory-exposed fish and in fish from the wild

Rozlyn F. Young; Wendy V. Wismer; Phillip M. Fedorak

Naphthenic acids (NAs) are the most water-soluble organic components found in the Athabasca oil sands in Alberta, Canada, and these acids are released into aqueous tailing waters as a result of bitumen extraction. Although the toxicity of NAs to fish is well known, there has been no method available to estimate NAs concentrations in fish. This paper describes a newly developed analytical method using single ion monitoring gas chromatography-mass spectrometry (GC-MS) to measure NAs in fish, down to concentrations of approximately 0.1mgkg(-1) of fish flesh. This method was used to measure the uptake and depuration of commercial NAs in laboratory experiments. Exposure of rainbow trout (Oncorhynchus mykiss) to 3mg NAsl(-1) for 9d gave a bioconcentration factor of approximately 2 at pH 8.2. Within 1d after the fish were transferred to NAs-free water, about 95% of the NAs were depurated. In addition, the analytical method was used to determine if NAs were present in four species of wild fish - northern pike (Esox lucius), lake whitefish (Coregonus clupeaformis), white sucker (Catostomus commersoni), walleye (Sander vitreus) - collected from near the oil sands. Flesh samples from 23 wild fish were analyzed, and 18 of these had no detectable NAs. Four fish (one of each species) contained NAs at concentrations from 0.2 to 2.8mgkg(-1). The GC-MS results from one wild fish presented a unique problem. However, with additional work it was concluded that the NAs concentration in this fish was <0.1mgkg(-1).


Frontiers in Microbiology | 2014

Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

Tariq Siddique; Petr Kuznetsov; Alsu Kuznetsova; Carmen Li; Rozlyn F. Young; J. M. Arocena; Julia M. Foght

Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.


Ecotoxicology and Environmental Safety | 2011

Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada.

Rozlyn F. Young; Lorelei Martínez Michel; Phillip M. Fedorak

Naphthenic acids, which have a variety of commercial applications, occur naturally in conventional crude oil and in highly biodegraded petroleum such as that found in the Athabasca oil sands in Alberta, Canada. Oil sands extraction is done using a caustic aqueous extraction process. The alkaline pH releases the naphthenic acids from the oil sands and dissolves them into water as their soluble naphthenate forms, which are anionic surfactants. These aqueous extracts contain concentrations of naphthenates that are acutely lethal to fishes and other aquatic organisms. Previous research has shown that naphthenic acids can be taken up by fish, but the distribution of these acids in various tissues of the fish has not been determined. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to commercial (Merichem) naphthenic acids in the laboratory. After a 10-d exposure to approximately 3mg naphthenic acids/L, the fish were dissected and samples of gills, heart, liver, kidney, muscle, and eggs were extracted and analyzed for free (unconjugated) naphthenic acids by a gas chromatography-mass spectrometry method. Each of the tissues contained naphthenic acids and non-parametric statistical analyses showed that gills and livers contained higher concentrations than the muscles and that the livers had higher concentrations than the hearts. Four different species of fish (two fish of each species) were collected from the Athabasca River near two oil sands mining and extraction operations. No free naphthenic acids were detected in the muscle or liver of these fish.


Analytical Methods | 2010

Evaluating MTBSTFA derivatization reagents for measuring naphthenic acids by gas chromatography-mass spectrometry

Rozlyn F. Young; Debora L. Coy; Phillip M. Fedorak

Naphthenic acids (general formula CnH2n+ZO2) are found in petroleum and oil sands deposits. Release of these acids to aquatic environments is a concern because of their potential toxicity. Naphthenic acids consist of a complex mixture of carboxylic acids, and estimating their concentrations in environmental samples is a challenge. Two recent reports have described gas chromatography-mass spectrometry (GC-MS) methods to selectively detect these acids in fish flesh and water samples. The methods use N-methyl-N-(t-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) with 1% t-butyldimethylchlorosilane (t-BDMCS) to derivatize naphthenic acids to their t-butyldimethylsilyl derivatives. Single ion monitoring (SIM) was used to detect the fragment m/z 267, which corresponds to the derivatives of one isomer class (n = 13 and Z = −4) of naphthenic acids. The SIM chromatograms give a characteristic naphthenic acids hump between retention times 15 and 20 min and a sharp peak for the t-butyldimethylsilyl derivatized surrogate standard, 9-fluorenecarboxylic acid. Integration of this hump and the peak from the surrogate standard allows quantification of the naphthenic acids. Using newly purchased MTBSTFA containing 1% t-BDMCS (from three different suppliers) yielded SIM chromatograms with one or two large contaminating peaks (eluting at 16.7 and 18.8 min) that interfered with integration of the hump, rendering the method unreliable. The contaminants were traced to the presence of t-BDMCS. Each of the three suppliers sells MTBSTFA devoid of t-BDMCS, and using MTBSTFA without 1% t-BDMCS was found to be suitable for the GC-MS method.


Applied and Environmental Microbiology | 2006

Aerobic Biodegradation of 2,2′-Dithiodibenzoic Acid Produced from Dibenzothiophene Metabolites

Rozlyn F. Young; Stephanie M. Cheng; Phillip M. Fedorak

ABSTRACT Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2′-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2′-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2′-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B12, and it degraded 2,2′-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2′-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2′-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2′-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.


Science of The Total Environment | 2012

Physiological effects and tissue residues from exposure of leopard frogs to commercial naphthenic acids

Judit E.G. Smits; Blair D. Hersikorn; Rozlyn F. Young; Phillip M. Fedorak

Naphthenic acids (NAs) have been cited as one of the main causes of the toxicity related to oil sands process-affected materials and have recently been measured in biological tissues (fish). However, adverse effects have not been a consistent finding in toxicology studies on vertebrates. This study set out to determine two factors: 1) whether exposure to commercial NAs (Refined Merichem) resulted in detectable tissue residues in native amphibians (northern leopard frogs, Lithobates pipiens), and 2) whether such exposure would produce clinical or subclinical toxicity. Frogs were kept in NA solutions (0, 20, or 40 mg/L) under saline conditions comparable to that on reclaimed wetlands in the Athabasca oil sands for 28 days. These exposures resulted in proportional NA concentrations in muscle tissue of the frogs, estimated by gas chromatography-mass spectrometry analyses. Detailed studies determined if the increasing concentrations of NAs, and subsequently increased tissue NA levels, caused a proportional compromise in the health of the experimental animals. Physiological investigations included innate immune function, thyroid hormone levels, and hepatic detoxification enzyme induction, none of which differed in response to increased exposures or tissue concentrations of NAs. Body mass did increase in both the salt- and NA-exposed animals, likely related to osmotic pressure and uptake of water through the skin. Our results demonstrate that commercial NAs are absorbed and deposited in muscle tissue, yet they show few negative physiological or toxicological effects on the frogs.

Collaboration


Dive into the Rozlyn F. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Li

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge