Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben Abagyan is active.

Publication


Featured researches published by Ruben Abagyan.


Journal of Biological Chemistry | 2011

Refinement of Glucagon-like Peptide 1 Docking to Its Intact Receptor Using Mid-region Photolabile Probes and Molecular Modeling

Laurence J. Miller; Quan Chen; Polo C.-H. Lam; Delia I. Pinon; Patrick M. Sexton; Ruben Abagyan; Maoqing Dong

The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7–36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu141 above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp297 within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.


Science | 2010

Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.

Beili Wu; Ellen Y.T. Chien; Clifford D. Mol; Gustavo Fenalti; Wei Liu; Vsevolod Katritch; Ruben Abagyan; Alexei Brooun; Peter A. Wells; F. Christopher Bi; Damon J. Hamel; Peter Kuhn; Tracy M. Handel; Vadim Cherezov; Raymond C. Stevens

Regulating Migration The migration of cells around the body is an important factor in cancer development and the establishment of infection. Movement is induced by small proteins called chemokines, and so for a specific function, migration is controlled by a relevant chemokine binding to its respective receptor. This family of receptors is known as guanine (G) protein–coupled receptors, which span cell membranes to mediate between external signals from chemokines and internal mechanisms. The chemokine receptor CXCR4 is implicated in many types of cancer and in infection, and Wu et al. (p. 1066, published online 7 October; see the Report by Chien et al.) report on a series of crystal structures obtained for CXCR4 bound to small molecules. In every case, the same homodimer structure was observed, suggesting that the interface is functionally relevant. These structures offer insights into the interactions between CXCR4 and its natural chemokine, as well as with the virus HIV-1. Five crystal structures provide insight into chemokine and HIV-1 recognition. Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein–coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein–coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.


Therapeutic Drug Monitoring | 2005

METLIN : A metabolite mass spectral database

Colin A. Smith; Grace O'Maille; Elizabeth J. Want; Chuan Qin; Sunia A. Trauger; Theodore R. Brandon; Darlene E. Custodio; Ruben Abagyan; Gary Siuzdak

Endogenous metabolites have gained increasing interest over the past 5 years largely for their implications in diagnostic and pharmaceutical biomarker discovery. METLIN (http://metlin.scripps.edu), a freely accessible web-based data repository, has been developed to assist in a broad array of metabolite research and to facilitate metabolite identification through mass analysis. METLIN includes an annotated list of known metabolite structural information that is easily cross-correlated with its catalogue of high-resolution Fourier transform mass spectrometry (FTMS) spectra, tandem mass spectrometry (MS/MS) spectra, and LC/MS data.


Journal of Computational Chemistry | 1994

ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation

Ruben Abagyan; Maxim Totrov; Dmitry Kuznetsov

An efficient methodology, further referred to as ICM, for versatile modeling operations and global energy optimization on arbitrarily fixed multimolecular systems is described. It is aimed at protein structure prediction, homology modeling, molecular docking, nuclear magnetic resonance (NMR) structure determination, and protein design. The method uses and further develops a previously introduced approach to model biomolecular structures in which bond lengths, bond angles, and torsion angles are considered as independent variables, any subset of them being fixed. Here we simplify and generalize the basic description of the system, introduce the variable dihedral phase angle, and allow arbitrary connections of the molecules and conventional definition of the torsion angles. Algorithms for calculation of energy derivatives with respect to internal variables in the topological tree of the system and for rapid evaluation of accessible surface are presented. Multidimensional variable restraints are proposed to represent the statistical information about the torsion angle distributions in proteins. To incorporate complex energy terms as solvation energy and electrostatics into a structure prediction procedure, a “double‐energy” Monte Carlo minimization procedure in which these terms are omitted during the minimization stage of the random step and included for the comparison with the previous conformation in a Markov chain is proposed and justified. The ICM method is applied successfully to a molecular docking problem. The procedure finds the correct parallel arrangement of two rigid helixes from a leucine zipper domain as the lowest‐energy conformation (0.5 Å root mean square, rms, deviation from the native structure) starting from completely random configuration. Structures with antiparallel helixes or helixes staggered by one helix turn had energies higher by about 7 or 9 kcal/mol, respectively. Soft docking was also attempted. A docking procedure allowing side‐chain flexibility also converged to the parallel configuration starting from the helixes optimized individually. To justdy an internal coordinate approach to the structure prediction as opposed to a Cartesian one, energy hypersurfaces around the native structure of the squash seeds trypsin inhibitor were studied. Torsion angle minimization from the optimal conformation randomly distorted up to the rms deviation of 2.2 Å or angular rms deviation of l0° restored the native conformation in most cases. In contrast, Cartesian coordinate minimization did not reach the minimum from deviations as small as 0.3 Å or 2°. We conclude that the most promising detailed approach to the protein‐folding problem would consist of some coarse global sampling strategy combined with the local energy minimization in the torsion coordinate space.


Nature | 2011

Structure of the human histamine H1 receptor complex with doxepin.

Tatsuro Shimamura; Mitsunori Shiroishi; Simone Weyand; Hirokazu Tsujimoto; Graeme Winter; Vsevolod Katritch; Ruben Abagyan; Vadim Cherezov; Wei Liu; Gye Won Han; Takuya Kobayashi; Raymond C. Stevens; So Iwata

The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H1 receptor (H1R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H1R complex with doxepin, a first-generation H1R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp 4286.48, a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H1R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys 1915.39 and/or Lys 179ECL2, both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H1R antagonist specificity against H1R.


Neuron | 1998

Novel Anchorage of GluR2/3 to the Postsynaptic Density by the AMPA Receptor–Binding Protein ABP

Sapna Srivastava; Pavel Osten; F.S Vilim; Latika Khatri; G.J Inman; B.A States; Christopher Daly; S DeSouza; Ruben Abagyan; Juli G. Valtschanoff; Richard J. Weinberg; Edward B. Ziff

We report the cloning of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor-binding protein (ABP), a postsynaptic density (PSD) protein related to glutamate receptor-interacting protein (GRIP) with two sets of three PDZ domains, which binds the GluR2/3 AMPA receptor subunits. ABP exhibits widespread CNS expression and is found at the postsynaptic membrane. We show that the protein interactions of the ABP/GRIP family differ from the PSD-95 family, which binds N-methyl-D-aspartate (NMDA) receptors. ABP binds to the GluR2/3 C-terminal VKI-COOH motif via class II hydrophobic PDZ interactions, distinct from the class I PSD-95-NMDA receptor interaction. ABP and GRIP also form homo- and heteromultimers through PDZ-PDZ interactions but do not bind PSD-95. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors.


Current Opinion in Structural Biology | 2008

Flexible ligand docking to multiple receptor conformations: a practical alternative

Maxim Totrov; Ruben Abagyan

State of the art docking algorithms predict an incorrect binding pose for about 50-70% of all ligands when only a single fixed receptor conformation is considered. In many more cases, lack of receptor flexibility results in meaningless ligand binding scores, even when the correct pose is obtained. Incorporating conformational rearrangements of the receptor binding pocket into predictions of both ligand binding pose and binding score is crucial for improving structure-based drug design and virtual ligand screening methodologies. However, direct modeling of protein binding site flexibility remains challenging because of the large conformational space that must be sampled, and difficulties remain in constructing a suitably accurate energy function. Here we show that using multiple fixed receptor conformations, either experimentally determined by crystallography or NMR, or computationally generated, is a practical shortcut that may improve docking calculations. In several cases, such an approach has led to experimentally validated predictions.


Proteins | 1997

Flexible protein–ligand docking by global energy optimization in internal coordinates

Maxim Totrov; Ruben Abagyan

Eight protein–ligand complexes were simulated by using global optimization of a complex energy function, including solvation, surface tension, and side‐chain entropy in the internal coordinate space of the flexible ligand and the receptor side chains [Abagyan, R.A., Totrov, M.M. J. Mol. Biol. 235:983–1002, 1994]. The procedure uses two types of efficient random moves, a pseudobrownian positional move [Abagyan, R.A., Totrov, M.M., Kuznetsov, D.A. J. Comp. Chem. 15:488–506, 1994] and a Biased‐Probability multitorsion move [Abagyan, R.A., Totrov, M.M. J. Mol. Biol. 235:983–1002, 1994], each accompanied by full local energy minimization. The best docking solutions were further ranked according to the interaction energy, which included intramolecular deformation energies of both receptor and ligand, the interaction energy, surface tension, side‐chain entropic contribution, and an electrostatic term evaluated as a boundary element solution of the Poisson equation with the molecular surface as a dielectric boundary. The geometrical accuracy of the docking solutions ranged from 30% to 70% according to the relative displacement error measure at a 1.5 Å scale. Similar results were obtained when the explicit receptor atoms were replaced with a grid potential. Proteins, Suppl. 1:215–220, 1997.


Chemistry & Biology | 2010

Virtual Ligand Screening of the p300/CBP Histone Acetyltransferase: Identification of a Selective Small Molecule Inhibitor

Erin M. Bowers; Gai Yan; Chandrani Mukherjee; Andrew Orry; Ling Wang; Marc A. Holbert; Nicholas T. Crump; Catherine A. Hazzalin; Glen Liszczak; Hua Yuan; Cecilia Larocca; S Adrian Saldanha; Ruben Abagyan; Yan Sun; David J. Meyers; Ronen Marmorstein; Louis C. Mahadevan; Rhoda M. Alani; Philip A. Cole

The histone acetyltransferase (HAT) p300/CBP is a transcriptional coactivator implicated in many gene regulatory pathways and protein acetylation events. Although p300 inhibitors have been reported, a potent, selective, and readily available active-site-directed small molecule inhibitor is not yet known. Here we use a structure-based, in silico screening approach to identify a commercially available pyrazolone-containing small molecule p300 HAT inhibitor, C646. C646 is a competitive p300 inhibitor with a K(i) of 400 nM and is selective versus other acetyltransferases. Studies on site-directed p300 HAT mutants and synthetic modifications of C646 confirm the importance of predicted interactions in conferring potency. Inhibition of histone acetylation and cell growth by C646 in cells validate its utility as a pharmacologic probe and suggest that p300/CBP HAT is a worthy anticancer target.


The EMBO Journal | 1998

Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast.

Steven J. Isakoff; Timothy Cardozo; Julian Andreev; Zhai Li; Kathryn M. Ferguson; Ruben Abagyan; Mark A. Lemmon; Ami Aronheim; Edward Y. Skolnik

Phosphatidylinositol 3‐kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3‐phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane‐targeted Ras to complement a temperature‐sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non‐permissive temperature of 37°C. Using this assay, we have identified several amino acids in the β1–β2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high‐affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain‐containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non‐permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.

Collaboration


Dive into the Ruben Abagyan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vsevolod Katritch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Andrew Orry

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Polo C.-H. Lam

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge