Rubén Álvarez-Álvarez
University of León
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rubén Álvarez-Álvarez.
Molecular Microbiology | 2011
Irene Santamarta; M. T. López-García; A. Kurt; N. Nárdiz; Rubén Álvarez-Álvarez; Rosario Pérez-Redondo; Juan-Francisco Martín; Paloma Liras
RT‐PCR analysis of the genes in the clavulanic acid cluster revealed three transcriptional polycistronic units that comprised the ceaS2–bls2–pah2–cas2, cyp–fd–orf12–orf13 and oppA2–orf16 genes, whereas oat2, car, oppA1, claR, orf14, gcaS and pbpA were expressed as monocistronic transcripts. Quantitative RT‐PCR of Streptomyces clavuligerus ATCC 27064 and the mutant S. clavuligerus ccaR::aph showed that, in the mutant, there was a 1000‐ to 10 000‐fold lower transcript level for the ceaS2 to cas2 polycistronic transcript that encoded CeaS2, the first enzyme of the clavulanic acid pathway that commits arginine to clavulanic acid biosynthesis. Smaller decreases in expression were observed in the ccaR mutant for other genes in the cluster. Two‐dimensional electrophoresis and MALDI‐TOF analysis confirmed the absence in the mutant strain of proteins CeaS2, Bls2, Pah2 and Car that are required for clavulanic acid biosynthesis, and CefF and IPNS that are required for cephamycin biosynthesis. Gel shift electrophoresis using recombinant r‐CcaR protein showed that it bound to the ceaS2 and claR promoter regions in the clavulanic acid cluster, and to the lat, cefF, cefD–cmcI and ccaR promoter regions in the cephamycin C gene cluster. Footprinting experiments indicated that triple heptameric conserved sequences were protected by r‐CcaR, and allowed identification of heptameric sequences as CcaR binding sites.
Journal of Biotechnology | 2013
V. Robles-Reglero; Irene Santamarta; Rubén Álvarez-Álvarez; Juan-Francisco Martín; Paloma Liras
Expression of the holomycin biosynthesis genes (hlm) has been studied in the wild type strain Streptomyces clavuligerus ATCC 27064 and holomycin overproducer mutants. RT-PCR transcription analysis of S. clavuligerus oppA2::aph showed a higher transcription of the hlmA, B, C, D, E, F, G, H, I and hlmL genes, a slightly lower expression for hlmK and no significant differences for the transcription of the two putative regulatory genes, hlmM and hlmJ, in relation to the wild type strain. Accordingly, protein spots corresponding to HlmD, HlmF and HlmG, which were barely detectable in the wild type strain, were present in high amounts in the holomycin overproducer S. clavuligerus oppA2::aph proteome. Transcription start point analysis of the hlm genes revealed that the annotated sequences in the databases for several hlm genes were incorrect. The hlm cluster was introduced into Streptomyces coelicolor M1154 and holomycin production by S. coelicolor M1154 [pVR-hol1] was validated by bioassays and confirmed by HPLC analysis and mass spectrometry. Heterologous holomycin production by the S. coelicolor transformant is 500-fold lower than in S. clavuligerus oppA2::aph. The transformant S. coelicolor M1154 [pVR-hol1] shows holomycin sensitivity to 100 μg/ml, similar to that of the parental S. coelicolor M1154 strain, suggesting that heterologous expression in S. coelicolor might be toxic due to the lack of an holomycin resistance gene in this host strain.
Applied and Environmental Microbiology | 2015
Y. Martínez-Burgo; Rubén Álvarez-Álvarez; Antonio Rodríguez-García; Paloma Liras
ABSTRACT Streptomyces clavuligerus claR::aph is a claR-defective mutant, but in addition to its claR defect it also carries fewer copies of the resident linear plasmids pSCL2 and pSCL4 (on the order of 4 × 105-fold lower than the wild-type strain), as shown by qPCR. To determine the function of ClaR without potential interference due to plasmid copy number, a new strain, S. clavuligerus ΔclaR::aac, with claR deleted and carrying the wild-type level of plasmids, was constructed. Transcriptomic analyses were performed in S. clavuligerus ΔclaR::aac and S. clavuligerus ATCC 27064 as the control strain. The new ΔclaR mutant did not produce clavulanic acid (CA) and showed a partial expression of genes for the early steps of the CA biosynthesis pathway and a very poor expression (1 to 8%) of the genes for the late steps of the CA pathway. Genes for cephamycin C biosynthesis were weakly upregulated (1.7-fold at 22.5 h of culture) in the ΔclaR mutant, but genes for holomycin biosynthesis were expressed at levels from 3- to 572-fold higher than in the wild-type strain, supporting the observed overproduction of holomycin by S. clavuligerus ΔclaR::aac. Interestingly, three secondary metabolites produced by gene clusters SMCp20, SMCp22, and SMCp24, encoding still-cryptic compounds, had partially or totally downregulated their genes in the mutant, suggesting a regulatory role for ClaR wider than previously reported. In addition, the amfR gene was downregulated, and consequently, the mutant did not produce aerial mycelium. Expression levels of about 100 genes in the genome were partially up- or downregulated in the ΔclaR mutant, many of them related to the upregulation of the sigma factor-encoding rpoE gene.
Microbial Biotechnology | 2014
Rubén Álvarez-Álvarez; Antonio Rodríguez-García; Irene Santamarta; R. Pérez-Redondo; A. Prieto-Domínguez; Y. Martínez-Burgo; Paloma Liras
Streptomyces clavuligerus ATCC 27064 and S. clavuligerus ΔccaR::tsr cultures were grown in asparagine‐starch medium, and samples were taken in the exponential and stationary growth phases. Transcriptomic analysis showed that the expression of 186 genes was altered in the ccaR‐deleted mutant. These genes belong to the cephamycin C gene cluster, clavulanic acid gene cluster, clavams, holomycin, differentiation, carbon, nitrogen, amino acids or phosphate metabolism and energy production. All the clavulanic acid biosynthesis genes showed Mc values in the order of −4.23. The blip gene‐encoding a β‐lactamase inhibitory protein was also controlled by the cephamycin C‐clavulanic acid cluster regulator (Mc −2.54). The expression of the cephamycin C biosynthesis genes was greatly reduced in the mutant (Mc values up to −7.1), while the genes involved in putative β‐lactam resistance were less affected (Mc average −0.88). Genes for holomycin biosynthesis were upregulated. In addition, the lack of clavulanic acid and cephamycin production negatively affected the expression of genes for the clavulanic acid precursor arginine and of miscellaneous genes involved in nitrogen metabolism (amtB, glnB, glnA3, glnA2, glnA1). The transcriptomic results were validated by quantative reverse transcription polymerase chain reaction and luciferase assay of luxAB‐coupled promoters. Transcriptomic analysis of the homologous genes of S. coelicolor validated the results obtained for S. clavuligerus primary metabolism genes.
Microbial Cell Factories | 2015
Rubén Álvarez-Álvarez; Alma Botas; Silvia M. Albillos; Angel Rumbero; Juan F. Martín; Paloma Liras
AbstractBackgroundSome types of flavonoid intermediates seemed to be restricted to plants. Naringenin is a typical plant metabolite, that has never been reported to be produced in prokariotes. Naringenin is formed by the action of a chalcone synthase using as starter 4-coumaroyl-CoA, which in dicotyledonous plants derives from phenylalanine by the action of a phenylalanine ammonia lyase.ResultsA compound produced by Streptomyces clavuligerus has been identified by LC–MS and NMR as naringenin and coelutes in HPLC with a naringenin standard. Genome mining of S. clavuligerus revealed the presence of a gene for a chalcone synthase (ncs), side by side to a gene encoding a P450 cytochrome (ncyP) and separated from a gene encoding a Pal/Tal ammonia lyase (tal). Deletion of any of these genes results in naringenin non producer mutants. Complementation with the deleted gene restores naringenin production in the transformants. Furthermore, naringenin production increases in cultures supplemented with phenylalanine or tyrosine.ConclusionThis is the first time that naringenin is reported to be produced naturally in a prokariote. Interestingly three non-clustered genes are involved in naringenin production, which is unusual for secondary metabolites. A tentative pathway for naringenin biosynthesis has been proposed.
Applied Microbiology and Biotechnology | 2013
Rubén Álvarez-Álvarez; Y. Martínez-Burgo; Rosario Pérez-Redondo; Alfredo F. Braña; Juan F. Martín; Paloma Liras
Clusters for clavulanic acid (CA) biosynthesis are present in the actinomycetes Streptomyces flavogriseus ATCC 33331 and Saccharomonospora viridis DSM 43017. These clusters, which are silent, contain blocks of conserved genes in the same order as those of the Streptomyces clavuligerus CA cluster but assembled in a different organization. S. flavogriseus was grown in nine different media, but clavulanic acid production was undetectable using bioassays or by high-performance liquid chromatography analyses. Reverse-transcriptase polymerase chain reaction (RT-PCR) of S. flavogriseus CA biosynthesis genes showed that the regulatory genes ccaR and claR and some biosynthetic genes were expressed whereas expression of cyp, orf12, orf13, and oppA2 was undetectable. The ccaR gene of S. clavuligerus was unable to switch on CA production in S. flavogriseus::[Pfur-ccaRC], but insertion of a cosmid carrying the S. clavuligerus CA cluster (not including the ccaR gene) conferred clavulanic acid production on S. flavogriseus::[SCos-CA] particularly in TBO and YEME media; these results suggests that some of the S. flavogriseus CA genes are inactive. The known heptameric sequences recognized by CcaR in S. clavuligerus are poorly or not conserved in S. flavogriseus. Quantitative RT-PCR analysis of the CA gene clusters of S. clavuligerus and S. flavogriseus showed that the average expression value of the expressed genes in the former strain was in the order of 1.68-fold higher than in the later. The absence of CA production by S. flavogriseus can be traced to the lack of expression of the essential genes cyp, orf12, orf13, orf14, and oppA2. Heterologous expression of S. clavuligerus CA gene cluster in S. flavogriseus::[SCos-CA] was 11- to 14-fold lower than in the parental strain, suggesting that the genetic background of the host strain is important for optimal production of CA in Streptomyces.
Journal of Biotechnology | 2014
Y. Martínez-Burgo; Rubén Álvarez-Álvarez; R. Pérez-Redondo; Paloma Liras
The Streptomyces clavuligerus cephamycin C gene cluster has been subcloned in a SuperCos-derived cosmid and introduced in Streptomyces flavogriseus ATCC 33331, Streptomyces coelicolor M1146 and Streptomyces albus J1074. The exconjugant strains were supplemented with an additional copy of the S. clavuligerus cephamycin regulatory activator gene, ccaRC, expressed from the constitutive Pfur promoter. Only S. flavogriseus-derived exconjugants produced a compound active against Escherichia coli ESS22-31 that was characterized by HPLC-MS as cephamycin C. The presence of an additional ccaR copy resulted in about 40-fold increase in cephamycin C production. Optimal heterologous cephamycin C production was in the order of 9% in relation to that of S. clavuligerus ATCC 27064. RT-qPCR studies indicated that ccaRC expression in S. flavogriseus::[SCos-CF] was 7% of that in S. clavuligerus and increased to 47% when supplemented with a copy of Pfur-ccaR. The effect on cephamycin biosynthesis gene expression was thus improved but not in an uniform manner for every gene. In heterologous strains, integration of the cephamycin cluster results in a ccaR-independent increased resistance to penicillin, cephalosporin and cefoxitin, what corresponds well to the strong expression of the pcbR and pbpA genes in S. flavogriseus-derived strains.
Applied Microbiology and Biotechnology | 2017
Ángeles Fernández-Bodega; Rubén Álvarez-Álvarez; Paloma Liras; Juan F. Martín
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.
Genes | 2017
Juan F. Martín; Rubén Álvarez-Álvarez; Paloma Liras
The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently.
Frontiers in Microbiology | 2018
Alma Botas; Rosario Pérez-Redondo; Antonio Rodríguez-García; Rubén Álvarez-Álvarez; Paula Yagüe; Angel Manteca; Paloma Liras
ArgR is a well-characterized transcriptional repressor controlling the expression of arginine and pyrimidine biosynthetic genes in bacteria. In this work, the biological role of Streptomyces coelicolor ArgR was analyzed by comparing the transcriptomes of S. coelicolor ΔargR and its parental strain, S. coelicolor M145, at five different times over a 66-h period. The effect of S. coelicolor ArgR was more widespread than that of the orthologous protein of Escherichia coli, affecting the expression of 1544 genes along the microarray time series. This S. coelicolor regulator repressed the expression of arginine and pyrimidine biosynthetic genes, but it also modulated the expression of genes not previously described to be regulated by ArgR: genes involved in nitrogen metabolism and nitrate utilization; the act, red, and cpk genes for antibiotic production; genes for the synthesis of the osmotic stress protector ectoine; genes related to hydrophobic cover formation and sporulation (chaplins, rodlins, ramR, and whi genes); all the cwg genes encoding proteins for glycan cell wall biosynthesis; and genes involved in gas vesicle formation. Many of these genes contain ARG boxes for ArgR binding. ArgR binding to seven new ARG boxes, located upstream or near the ectA-ectB, afsS, afsR, glnR, and redH genes, was tested by DNA band-shift assays. These data and those of previously assayed fragments permitted the construction of an improved model of the ArgR binding site. Interestingly, the overexpression of sporulation genes observed in the ΔargR mutant in our culture conditions correlated with a sporulation-like process, an uncommon phenotype.