Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben Eggers is active.

Publication


Featured researches published by Ruben Eggers.


Experimental Neurology | 2004

Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor

Bas Blits; Thomas P. Carlstedt; Marc J. Ruitenberg; Fred De Winter; Wim T.J.M.C. Hermens; Paul A. Dijkhuizen; Jill W.C. Claasens; Ruben Eggers; Ronald van der Sluis; Liliane Tenenbaum; Gerard J. Boer; Joost Verhaagen

Following avulsion of a spinal ventral root, motoneurons that project through the avulsed root are axotomized. Avulsion between, for example, L2 and L6 leads to denervation of hind limb muscles. Reimplantation of an avulsed root directed to the motoneuron pool resulted in re-ingrowth of some motor axons. However, most motoneurons display retrograde atrophy and subsequently die. Two neurotrophic factors, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), promote the survival of motoneurons after injury. The long-term delivery of these neurotrophic factors to the motoneurons in the ventral horn of the spinal cord is problematic. One strategy to improve the outcome of the neurosurgical reinsertion of the ventral root following avulsion would involve gene transfer with adeno-associated viral (AAV) vectors encoding these neurotrophic factors near the denervated motoneuron pool. Here, we show that AAV-mediated overexpression of GDNF and BDNF in the spinal cord persisted for at least 16 weeks. At both 1 and 4 months post-lesion AAV-BDNF- and -GDNF-treated animals showed an increased survival of motoneurons, the effect being more prominent at 1 month. AAV vector-mediated overexpression of neurotrophins also promoted the formation of a network of motoneuron fibers in the ventral horn at the avulsed side, but motoneurons failed to extent axons into the reinserted L4 root towards the sciatic nerve nor to improve functional recovery of the hind limbs. This suggests that high levels of neurotrophic factors in the ventral horn promote sprouting, but prevent directional growth of axons of a higher number of surviving motoneurons into the implanted root.


Molecular Therapy | 2010

Comparison of AAV Serotypes for Gene Delivery to Dorsal Root Ganglion Neurons

Matthew R. J. Mason; Erich M. Ehlert; Ruben Eggers; C.W. Pool; Stephan Hermening; Angelina Huseinovic; Eric Timmermans; Bas Blits; Joost Verhaagen

For many experiments in the study of the peripheral nervous system, it would be useful to genetically manipulate primary sensory neurons. We have compared vectors based on adeno-associated virus (AAV) serotypes 1, 2, 3, 4, 5, 6, and 8, and lentivirus (LV), all expressing green fluorescent protein (GFP), for efficiency of transduction of sensory neurons, expression level, cellular tropism, and persistence of transgene expression following direct injection into the dorsal root ganglia (DRG), using histological quantification and qPCR. Two weeks after injection, AAV1, AAV5, and AAV6 had transduced the most neurons. The time course of GFP expression from these three vectors was studied from 1 to 12 weeks after injection. AAV5 was the most effective serotype overall, followed by AAV1. Both these serotypes showed increasing neuronal transduction rates at later time points, with some injections of AAV5 yielding over 90% of DRG neurons GFP(+) at 12 weeks. AAV6 performed well initially, but transduction rates declined dramatically between 4 and 12 weeks. AAV1 and AAV5 both transduced large-diameter neurons, IB4(+) neurons, and CGRP(+) neurons. In conclusion, AAV5 is a highly effective gene therapy vector for primary sensory neurons following direct injection into the DRG.


European Journal of Neuroscience | 2008

Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve

Martijn R. Tannemaat; Ruben Eggers; William T. Hendriks; Godard C.W. de Ruiter; Joop J. van Heerikhuize; C.W. Pool; Martijn J. A. Malessy; Gerard J. Boer; Joost Verhaagen

Even after reconstructive surgery, major functional impairments remain in the majority of patients with peripheral nerve injuries. The application of novel emerging therapeutic strategies, such as lentiviral (LV) vectors, may help to stimulate peripheral nerve regeneration at a molecular level. In the experiments described here, we examined the effect of LV vector‐mediated overexpression of nerve growth factor (NGF) and glial cell line‐derived neurotrophic factor (GDNF) on regeneration of the rat peripheral nerve in a transection/repair model in vivo. We showed that LV vectors can be used to locally elevate levels of NGF and GDNF in the injured rat peripheral nerve and this has profound and differential effects on regenerating sensory and motor neurons. For sensory neurons, increased levels of NGF and GDNF do not affect the number of regenerated neurons 1 cm distal to a lesion at 4 weeks post‐lesion but do cause changes in the expression of markers for different populations of nociceptive neurons. These changes are accompanied by significant alterations in the recovery of nociceptive function. For motoneurons, overexpression of GDNF causes trapping of regenerating axons, impairing both long‐distance axonal outgrowth and reinnervation of target muscles, whereas NGF has no effect on these parameters. These observations show the feasibility of combining surgical repair of the transected nerve with the application of viral vectors. Furthermore, they show a difference between the regenerative responses of motor and sensory neurons to locally increased levels of NGF and GDNF.


BMC Neuroscience | 2010

Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

Erich M. Ehlert; Ruben Eggers; Simone P. Niclou; Joost Verhaagen

BackgroundAfter a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs) and several axon guidance molecules, including all members of the secreted (class 3) Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi) is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV) mediated expression of short hairpin RNAs (shRNAs) to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1) and Neuropilin 2 (Npn-2).ResultsWe have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG) of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents.ConclusionsRNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.


Molecular and Cellular Neuroscience | 2002

Intravitreal Injection of Adeno-associated Viral Vectors Results in the Transduction of Different Types of Retinal Neurons in Neonatal and Adult Rats: A Comparison with Lentiviral Vectors

Alan R. Harvey; W Kamphuis; Ruben Eggers; Natalie A. Symons; Bas Blits; Simone P. Niclou; Gerard J. Boer; Joost Verhaagen

Replication-deficient viral vectors encoding the marker gene green fluorescent protein (GFP) were injected into the vitreous of newborn, juvenile (P14), and adult rats. We tested two different types of modified virus: adeno-associated viral-2-GFP (AAV-GFP) and lentiviral-GFP vectors (LV-GFP). The extent of retinal cell transduction in different-aged animals was compared 7, 21, and 70 days after eye injections. At all postinjection times, LV-GFP transduction was mostly limited to pigment epithelium and cells in sclera and choroid. In contrast, transduction of large numbers of neural retinal cells was seen 21 and 70 days after AAV-GFP injections. AAV-GFP predominantly transduced neurons, although GFP-positive Müller cells were seen. All neuronal classes were labeled, but the extent of transduction for a given class varied depending on injection age. After P0 injections about 50% of transduced cells were photoreceptors and 30-40% were amacrine or bipolar cells. After adult injections 60-70% of transduced cells were retinal ganglion cells. In adults many GFP-positive retinal axons were traced through the optic nerve/tract and terminal arbors were visualized in central targets.


BMC Neuroscience | 2004

Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

Bushra Y Ahmed; Sridhara Chakravarthy; Ruben Eggers; Wim T.J.M.C. Hermens; Jing Ying Zhang; Simone P Niclou; Christiaan Levelt; Fred Sablitzky; Patrick N. Anderson; Ar Lieberman; Joost Verhaagen

BackgroundInactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV) and lentiviral (LV) vectors into discrete regions of the forebrain.ResultsRecombinant AAV-Cre, AAV-GFP (green fluorescent protein) and LV-Cre-EGFP (enhanced GFP) were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection.ConclusionAAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.


Journal of Neurotrauma | 2003

Locomotor recovery after spinal cord contusion injury in rats is improved by spontaneous exercise

Nico van Meeteren; Ruben Eggers; Alex J. Lankhorst; Willem Hendrik Gispen; Frank P.T. Hamers

We have recently shown that enriched environment (EE) housing significantly enhances locomotor recovery following spinal cord contusion injury (SCI) in rats. As the type and intensity of locomotor training with EE housing are rather poorly characterized, we decided to compare the effectiveness of EE housing with that of voluntary wheel running, the latter of which is both well characterized and easily quantified. Female Wistar rats were made familiar with three types of housing conditions, social housing (nine together) in an EE (EHC), individual housing in a running wheel cage (RUN, n = 8), and standard housing two together (CON, n = 10). Subsequently, a 12.5 gcm SCI at Th8 was produced and animals were randomly divided over the three housing conditions. Locomotor function was measured regularly, once a week by means of the BBB score, BBB sub score, TLH test, Gridwalk test, and CatWalk test. In the RUN group, daily distance covered was also measured. Locomotor recovery in the EHC and the RUN groups was equal and significantly better than in the CON group. The extent of recovery at 8 weeks post injury in the RUN group did not correlate with distance covered. We conclude that locomotor training needs to exceed a given threshold in order to be effective in enhancing locomotor recovery in this experimental model, but that once this threshold is exceeded no further improvement occurs, and that the specificity of locomotor training plays little role.


Brain | 2011

The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain

Simone A. van den Berge; Miriam E. van Strien; Joanna A. Korecka; Anke A. Dijkstra; Jacqueline A. Sluijs; Lieneke Kooijman; Ruben Eggers; Lidia De Filippis; Angelo L. Vescovi; Joost Verhaagen; Wilma D.J. van de Berg; Elly M. Hol

There are many indications that neurogenesis is impaired in Parkinsons disease, which might be due to a lack of dopamine in the subventricular zone. An impairment in neurogenesis may have negative consequences for the development of new therapeutic approaches in Parkinsons disease, as neural stem cells are a potential source for endogenous repair. In this study, we examined the subventricular zone of 10 patients with Parkinsons disease and 10 age- and sex-matched controls for proliferation and neural stem cell numbers. We also included five cases with incidental Lewy body disease, which showed Parkinsons disease pathology but no clinical symptoms and thus did not receive dopaminergic treatment. We quantified the neural stem cell number and proliferative capacity in the subventricular zone of these three donor groups. We found subventricular neural stem cells in each donor, with a high variation in number. We did not observe significant differences in neural stem cell number or in proliferation between the groups. Additionally, we were able to culture neural stem cells from post-mortem brain of several patients with Parkinsons disease, confirming the presence of viable neural stem cells in these brains. We have also examined the subventricular zone of a chronic, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsons disease mouse model, and again found no effect of dopaminergic denervation on precursor proliferation. Lastly, we investigated the proliferation capacity of two different human neural stem cell lines in response to dopamine. Both cell lines did not respond with a change in proliferation to treatment with dopamine agonists and an antagonist. In summary, the adult neural stem cell pool in the subventricular zone was not clearly affected in the human parkinsonian brain or a Parkinsons disease mouse model. Furthermore, we did not find evidence that dopamine has a direct effect on human neural stem cell proliferation in vitro. Thus, we conclude that the number of adult neural stem cells is probably not diminished in the parkinsonian brain and that dopamine depletion most likely has no effect on human neural stem cells.


Methods | 2002

Adeno-associated viral vectors as agents for gene delivery: application in disorders and trauma of the central nervous system

Marc J. Ruitenberg; Ruben Eggers; Gerard J. Boer; Joost Verhaagen

The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors, into the adult rat brain and spinal cord to obtain reproducible and successful transduction of neural tissue. Surgical and injection procedures are based on the extensive experience of our laboratory to deliver viral vectors to the adult rat CNS and have been optimized over the years. First, a brief overview is presented on the use and potential of viral vectors to treat neurological disorders or trauma of the CNS. Next, methods to deliver AAV vectors to the rat brain and spinal cord are described in great detail with the intent of providing a practical guide to potential users. Finally, some data on the experimental outcomes following AAV vector-mediated gene transfer to the adult rat CNS are presented as is a brief discussion on both the advantages and limitations of AAV vectors as tools for somatic gene transfer.


Molecular and Cellular Neuroscience | 2008

Neuroregenerative effects of lentiviral vector-mediated GDNF expression in reimplanted ventral roots

Ruben Eggers; William T. Hendriks; Martijn R. Tannemaat; Joop J. van Heerikhuize; C.W. Pool; Thomas Carlstedt; Arnaud Zaldumbide; Rob C. Hoeben; Gerard J. Boer; Joost Verhaagen

Traumatic avulsion of spinal nerve roots causes complete paralysis of the affected limb. Reimplantation of avulsed roots results in only limited functional recovery in humans, specifically of distal targets. Therefore, root avulsion causes serious and permanent disability. Here, we show in a rat model that lentiviral vector-mediated overexpression of glial cell line-derived neurotrophic factor (GDNF) in reimplanted nerve roots completely prevents motoneuron atrophy after ventral root avulsion and stimulates regeneration of axons into reimplanted roots. However, over the course of 16 weeks neuroma-like structures are formed in the reimplanted roots, and regenerating axons are trapped at sites with high levels of GDNF expression. A high local concentration of GDNF therefore impairs long distance regeneration. These observations show the feasibility of combining neurosurgical repair of avulsed roots with gene-therapeutic approaches. Our data also point to the importance of developing viral vectors that allow regulated expression of neurotrophic factors.

Collaboration


Dive into the Ruben Eggers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard J. Boer

American Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Martijn R. Tannemaat

American Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich M. Ehlert

American Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Bas Blits

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Kasper C. D. Roet

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.W. Pool

American Academy of Arts and Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge