Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben K. Dagda is active.

Publication


Featured researches published by Ruben K. Dagda.


Journal of Biological Chemistry | 2009

Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission

Ruben K. Dagda; Salvatore J. Cherra; Scott M. Kulich; Anurag Tandon; David Park; Charleen T. Chu

Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.


Nature Cell Biology | 2013

Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells

Charleen T. Chu; Jing Ji; Ruben K. Dagda; Jian Fei Jiang; Yulia Y. Tyurina; Alexandr A. Kapralov; Vladimir A. Tyurin; Naveena Yanamala; Indira H. Shrivastava; Dariush Mohammadyani; Kent Zhi Qiang Wang; Jianhui Zhu; Judith Klein-Seetharaman; Krishnakumar Balasubramanian; Andrew A. Amoscato; Grigory G. Borisenko; Zhentai Huang; Aaron M. Gusdon; Amin Cheikhi; Erin Steer; Ruth Wang; Catherine J. Baty; Simon Watkins; Ivet Bahar; Hülya Bayır; Valerian E. Kagan

Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial surface in primary cortical neurons and SH-SY5Y cells. RNAi knockdown of cardiolipin synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes. Furthermore, we found that the autophagy protein microtubule-associated-protein-1 light chain 3 (LC3), which mediates both autophagosome formation and cargo recognition, contains cardiolipin-binding sites important for the engulfment of mitochondria by the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction sites by computational modelling inhibited its participation in mitophagy. These data indicate that redistribution of cardiolipin serves as an ‘eat-me’ signal for the elimination of damaged mitochondria from neuronal cells.


Autophagy | 2008

Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: Implications for Parkinson’s disease

Ruben K. Dagda; Jianhui Zhu; Scott M. Kulich; Charleen T. Chu

Degenerating neurons of Parkinson’s disease (PD) patient brains exhibit granules of phosphorylated extracellular signal-regulated protein kinase 1/2 (ERK1/2) that localize to autophagocytosed mitochondria. Here we show that 6-hydroxydopamine (6-OHDA) elicits activity-related localization of ERK1/2 in mitochondria of SH-SY5Y cells, and these events coincide with induction of autophagy and precede mitochondrial degradation. Transient transfection of wild-type (WT) ERK2 or constitutively active MAPK/ERK Kinase 2 (MEK2-CA) was sufficient to induce mitophagy to a degree comparable with that elicited by 6-OHDA, while constitutively active ERK2 (ERK2-CA) had a greater effect. We developed green fluorescent protein (GFP) fusion constructs of WT, CA, and kinase-deficient (KD) ERK2 to study the role of ERK2 localization in regulating mitophagy and cell death. Under basal conditions, cells transfected with GFP-ERK2-WT or GFP-ERK2-CA, but not GFP-ERK2-KD, displayed discrete cytoplasmic ERK2 granules of which a significant fraction colocalized with mitochondria and markers of autophagolysosomal maturation. The colocalizing GFP-ERK2/mitochondria granules are further increased by 6-OHDA and undergo autophagic degradation, as bafilomycin-A, an inhibitor of autolysosomal degradation, robustly increased their detection. Interestingly, increasing ERK2-WT or ERK2-CA expression was sufficient to promote comparable levels of macroautophagy as assessed by analysis of the autophagy marker microtubule-associated protein 1 light chain 3 (LC3). In contrast, the level of mitophagy was more tightly correlated with ERK activity levels, potentially explained by the greater localization of ERK2-CA to mitochondria compared to ERK2-WT. These data indicate that mitochondrial localization of ERK2 activity is sufficient to recapitulate the effects of 6-OHDA on mitophagy and autophagic cell death.


Autophagy | 2007

Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death.

Charleen T. Chu; Jianhui Zhu; Ruben K. Dagda

Growing evidence supports an active role for dysregulated macroautophagy (autophagic stress) in neuronal cell death and neurodegeneration. Alterations in mitochondrial function and dynamics are also strongly implicated in neurodegenerative diseases. Interestingly, whereas the core autophagy machinery is evolutionarily conserved and shared among constitutive and induced or selective autophagy, recent studies implicate distinct mechanisms regulating mitochondrial autophagy (mitophagy) in response to general autophagic stimuli. Little is known about pathways regulating selective, damage-induced mitophagy. We found that the parkinsonian neurotoxin MPP+ induces autophagy and mitochondrial degradation that is inhibited by siRNA knockdown of autophagy proteins Atg5, Atg7 and Atg8, but occurs independently of Beclin 1, a component of the class III (PIK3C3/Vps34) phosphoinositide 3-kinase (PI3K) complex. Instead, MPP+-induced mitophagy is dependent upon MAPK signaling. Interestingly, all treatments that inhibited autophagy also conferred protection from MPP+-induced cell death. A prior human tissue study further supports a role for ERK/MAPK-regulated autophagy in Parkinsons and Lewy body diseases. As competition for limiting amounts of Beclin 1 may serve to prevent harmful overactivation of autophagy, understanding mechanisms that bypass or complement a requirement for PI3K-Beclin 1 activity could lead to strategies to modulate harmful autophagic stress in injured or degenerating neurons.


Methods in Enzymology | 2009

Autophagy in Neurite Injury and Neurodegeneration: In Vitro and In Vivo Models

Charleen T. Chu; Edward D. Plowey; Ruben K. Dagda; Robert W. Hickey; Salvatore J. Cherra; Robert S. B. Clark

Recent advances indicate that maintaining a balanced level of autophagy is critically important for neuronal health and function. Pathologic dysregulation of macroautophagy has been implicated in synaptic dysfunction, cellular stress, and neuronal cell death. Autophagosomes and autolysosomes are induced in acute and chronic neurological disorders including stroke, brain trauma, neurotoxin injury, Parkinsons, Alzheimers, Huntingtons, motor neuron, prion, lysosomal storage, and other neurodegenerative diseases. Compared to other cell types, neuronal autophagy research presents particular challenges that may be addressed through still evolving techniques. Neuronal function depends upon maintenance of axons and dendrites (collectively known as neurites) that extend for great distances from the cell body. Both autophagy and mitochondrial content have been implicated in regulation of neurite length and function in physiological (plasticity) and pathological remodeling. Here, we highlight several molecular cell biological and imaging methods to study autophagy and mitophagy in neuritic and somatic compartments of differentiated neuronal cell lines and primary neuron cultures, using protocols developed in toxic and genetic models of parkinsonian neurodegeneration. In addition, mature neurons can be studied using in vivo protocols for modeling ischemic and traumatic injuries. Future challenges include application of automated computer-assisted image analysis to the axodendritic tree of individual neurons and improving methods for measuring neuronal autophagic flux.


Journal of Bioenergetics and Biomembranes | 2009

Mitochondrial quality control: insights on how Parkinson's disease related genes PINK1, parkin, and Omi/HtrA2 interact to maintain mitochondrial homeostasis.

Ruben K. Dagda; Charleen T. Chu

Alterations in mitochondrial homeostasis have been implicated in the etiology of Parkinson disease (PD) as demonstrated by human tissue studies, cell culture and in vivo genetic and toxin models. Mutations in the genes encoding PTEN-induced kinase 1 (PINK1), Omi/HtrA2 and parkin contribute to rare forms of parkinsonian neurodegeneration. Recently, each of these proteins has been shown to play a normal role in regulating mitochondrial structure, function, fission-fusion dynamics, or turnover (autophagy and biogenesis), promoting neuronal survival. Here, we review the biochemical mechanisms of mitochondrial protection conferred by each of these PD associated gene products in neurons, neuronal cell lines and other cell types. Potential molecular interactions and mitoprotective signaling pathways involving these three PD associated gene products are discussed in the context of mitochondrial quality control, in response to increasing levels of mitochondrial damage. We propose that PINK1, Omi/HtrA2 and parkin participate at different levels in mitochondrial quality control, converging through some overlapping and some distinct steps to maintain a common phenotype of healthy mitochondrial networks.


Cell Death & Differentiation | 2011

Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease.

Ruben K. Dagda; Aaron M. Gusdon; Irene Pien; Stefan Strack; Steven H. Green; Chenjian Li; B Van Houten; Salvatore J. Cherra; Charleen T. Chu

Mutations in PTEN-induced kinase 1 (PINK1) are associated with a familial syndrome related to Parkinsons disease (PD). We previously reported that stable neuroblastoma SH-SY5Y cell lines with reduced expression of endogenous PINK1 exhibit mitochondrial fragmentation, increased mitochondria-derived superoxide, induction of compensatory macroautophagy/mitophagy and a low level of ongoing cell death. In this study, we investigated the ability of protein kinase A (PKA) to confer protection in this model, focusing on its subcellular targeting. Either: (1) treatment with pharmacological PKA activators; (2) transient expression of a constitutively active form of mitochondria-targeted PKA; or (3) transient expression of wild-type A kinase anchoring protein 1 (AKAP1), a scaffold that targets endogenous PKA to mitochondria, reversed each of the phenotypes attributed to loss of PINK1 in SH-SY5Y cells, and rescued parameters of mitochondrial respiratory dysfunction. Mitochondrial and lysosomal changes in primary cortical neurons derived from PINK1 knockout mice or subjected to PINK1 RNAi were also reversed by the activation of PKA. PKA phosphorylates the rat dynamin-related protein 1 isoform 1 (Drp1) at serine 656 (homologous to human serine 637), inhibiting its pro-fission function. Mimicking phosphorylation of Drp1 recapitulated many of the protective effects of AKAP1/PKA. These data indicate that redirecting endogenous PKA to mitochondria can compensate for deficiencies in PINK1 function, highlighting the importance of compartmentalized signaling networks in mitochondrial quality control.


Neuropathology and Applied Neurobiology | 2010

Review: Autophagy and neurodegeneration: survival at a cost?

Salvatore J. Cherra; Ruben K. Dagda; Charleen T. Chu

S. J. Cherra III, R. K. Dagda and C. T. Chu (2010) Neuropathology and Applied Neurobiology36, 125–132
Autophagy and neurodegeneration: survival at a cost?


Cardiovascular Research | 2014

Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion

Christelle Kamga Pride; Li Mo; Kelly Quesnelle; Ruben K. Dagda; Daniel Murillo; Lisa Geary; Catherine Corey; Rafael de Lima Portella; Sergey Zharikov; Claudette M. St. Croix; Salony Maniar; Charleen T. Chu; Nicholas K.H. Khoo; Sruti Shiva

AIMS Nitrite (NO2(-)), a dietary constituent and nitric oxide (NO) oxidation product, mediates cardioprotection after ischaemia/reperfusion (I/R) in a number of animal models when administered during ischaemia or as a pre-conditioning agent hours to days prior to the ischaemic episode. When present during ischaemia, the reduction of nitrite to bioactive NO by deoxygenated haem proteins accounts for its protective effects. However, the mechanism of nitrite-induced pre-conditioning, a normoxic response which does not appear to require reduction of nitrite to NO, remains unexplored. METHODS AND RESULTS Using a model of hypoxia/reoxygenation (H/R) in cultured rat H9c2 cardiomyocytes, we demonstrate that a transient (30 min) normoxic nitrite treatment significantly attenuates cell death after a hypoxic episode initiated 1 h later. Mechanistically, this protection depends on the activation of protein kinase A, which phosphorylates and inhibits dynamin-related protein 1, the predominant regulator of mitochondrial fission. This results morphologically, in the promotion of mitochondrial fusion and functionally in the augmentation of mitochondrial membrane potential and superoxide production. We identify AMP kinase (AMPK) as a downstream target of the mitochondrial reactive oxygen species (ROS) generated and show that its oxidation and subsequent phosphorylation are essential for cytoprotection, as scavenging of ROS prevents AMPK activation and inhibits nitrite-mediated protection after H/R. The protein kinase A-dependent protection mediated by nitrite is reproduced in an intact isolated rat heart model of I/R. CONCLUSIONS These data are the first to demonstrate nitrite-dependent normoxic modulation of both mitochondrial morphology and function and reveal a novel signalling pathway responsible for nitrite-mediated cardioprotection.


Mitochondrion | 2009

Mitochondrial kinases in Parkinson's disease: converging insights from neurotoxin and genetic models.

Ruben K. Dagda; Jianhui Zhu; Charleen T. Chu

Alterations in mitochondrial biology have long been implicated in neurotoxin, and more recently, genetic models of parkinsonian neurodegeneration. In particular, kinase regulation of mitochondrial dynamics and turnover are emerging as central mechanisms at the convergence of neurotoxin, environmental and genetic approaches to studying Parkinsons disease (PD). Kinases that localize to mitochondria during neuronal injury include mitogen activated protein kinases (MAPK) such as extracellular signal regulated protein kinases (ERK) and c-Jun N-terminal kinases (JNK), protein kinase B/Akt, and PTEN-induced kinase 1 (PINK1). Although site(s) of action within mitochondria and specific kinase targets are still unclear, these signaling pathways regulate mitochondrial respiration, transport, fission-fusion, calcium buffering, reactive oxygen species (ROS) production, mitochondrial autophagy and apoptotic cell death. In this review, we summarize accelerating experimental evidence gathered over the last decade that implicate a central role for kinase signaling at the mitochondrion in Parkinsons and related neurodegenerative disorders. Interactions involving alpha-synuclein, leucine rich repeat kinase 2 (LRRK2), DJ-1 and Parkin are discussed. Converging mechanisms from different model systems support the concept of common pathways in parkinsonian neurodegeneration that may be amenable to future therapeutic interventions.

Collaboration


Dive into the Ruben K. Dagda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianhui Zhu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge