Ruben Mayer
University of Stuttgart
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruben Mayer.
distributed event-based systems | 2013
Boris Koldehofe; Ruben Mayer; Kurt Rothermel; Marco Volz
Reliability is of critical importance to many applications involving distributed event processing systems. Especially the use of stateful operators makes it challenging to provide efficient recovery from failures and to ensure consistent event streams. Even during failure-free execution, state-of-the-art methods for achieving reliability incur significant overhead at run-time concerning computational resources, event traffic, and event detection time. This paper proposes a novel method for rollback-recovery that allows for recovery from multiple simultaneous operator failures, but eliminates the need for persistent checkpoints. Thereby, the operator state is preserved in \emph{savepoints} at points in time when its execution solely depends on the state of incoming event streams which are reproducible by predecessor operators. We propose an expressive event processing model to determine savepoints and algorithms for their coordination in a distributed operator network. Evaluations show that very low overhead at failure-free execution in comparison to other approaches is achieved.
IEEE Internet of Things Journal | 2015
Ruben Mayer; Boris Koldehofe; Kurt Rothermel
The tremendous number of sensors and smart objects being deployed in the Internet of Things (IoT) pose the potential for IT systems to detect and react to live-situations. For using this hidden potential, complex event processing (CEP) systems offer means to efficiently detect event patterns (complex events) in the sensor streams and therefore, help in realizing a “distributed intelligence” in the IoT. With the increasing number of data sources and the increasing volume at which data is produced, parallelization of event detection is crucial to limit the time events need to be buffered before they actually can be processed. In this paper, we propose a pattern-sensitive partitioning model for data streams that is capable of achieving a high degree of parallelism in detecting event patterns, which formerly could only consistently be detected in a sequential manner or at a low parallelization degree. Moreover, we propose methods to dynamically adapt the parallelization degree to limit the buffering imposed on event detection in the presence of dynamic changes to the workload. Extensive evaluations of the system behavior show that the proposed partitioning model allows for a high degree of parallelism and that the proposed adaptation methods are able to meet a buffering limit for event detection under high and dynamic workloads.
international conference on big data | 2014
Ruben Mayer; Boris Koldehofe; Kurt Rothermel
Complex Event Processing (CEP) systems enable applications to react to live-situations by detecting event patterns (complex events) in data streams. With the increasing number of data sources and the increasing volume at which data is produced, parallelization of event detection is becoming of tremendous importance to limit the time events need to be buffered before they actually can be processed by an event detector - named event processing operator. In this paper, we propose a pattern-sensitive partitioning model for data streams that is capable of achieving a high degree of parallelism for event patterns which formerly could only be consistently detected in a sequential manner or at a low parallelization degree. Moreover, we propose methods to dynamically adapt the parallelization degree to limit the buffering imposed on event detection in the presence of dynamic changes to the workload. Extensive evaluations of the system behavior show that the proposed partitioning model allows for a high degree of parallelism and that the proposed adaptation methods are able to meet the buffering level for event detection under high and dynamic workloads.
distributed event-based systems | 2017
Ruben Mayer; Muhammad Adnan Tariq; Kurt Rothermel
Distributed Complex Event Processing has emerged as a well-established paradigm to detect situations of interest from basic sensor streams, building an operator graph between sensors and applications. In order to detect event patterns that correspond to situations of interest, each operator correlates events on its incoming streams according to a sliding window mechanism. To increase the throughput of an operator, different windows can be assigned to different operator instances---i.e., identical operator copies---which process them in parallel. This implies that events that are part of multiple overlapping windows are replicated to different operator instances. The communication overhead of replicating the events can be reduced by assigning overlapping windows to the same operator instance. However, this imposes a higher processing load on the single operator instance, possibly overloading it. In this paper, we address the trade-off between processing load and communication overhead when assigning overlapping windows to a single operator instance. Controlling the trade-off is challenging and cannot be solved with traditional reactive methods. To this end, we propose a model-based batch scheduling controller building on prediction. Evaluations show that our approach is able to significantly save bandwidth, while keeping a user-defined latency bound in the operator instances.
distributed event-based systems | 2016
Ruben Mayer; Christian Mayer; Muhammad Adnan Tariq; Kurt Rothermel
In recent years, the proliferation of highly dynamic graph-structured data streams fueled the demand for real-time data analytics. For instance, detecting recent trends in social networks enables new applications in areas such as disaster detection, business analytics or health-care. Parallel Complex Event Processing has evolved as the paradigm of choice to analyze data streams in a timely manner, where the incoming data streams are split and processed independently by parallel operator instances. However, the degree of parallelism is limited by the feasibility of splitting the data streams into independent parts such that correctness of event processing is still ensured. In this paper, we overcome this limitation for graph-structured data by further parallelizing individual operator instances using modern graph processing systems. These systems partition the graph data and execute graph algorithms in a highly parallel fashion, for instance using cloud resources. To this end, we propose a novel graph-based Complex Event Processing system GraphCEP and evaluate its performance in the setting of two case studies from the DEBS Grand Challenge 2016.
Proceedings of the Posters & Demos Session on | 2014
Beate Ottenwälder; Ruben Mayer; Boris Koldehofe
A recent trend in communication networks---sometimes referred to as fog computing---offers to execute computational tasks close to the access points of the networks. This enables mobile Complex Event Processing (CEP) middlewares to significantly reduce end-to-end latencies and bandwidth usage by migrating operators when event sources and consumers change their location. This demonstration shows the impact of proactive migration strategies on the perceived end user quality in the context of a video monitoring application.
arXiv: Distributed, Parallel, and Cluster Computing | 2017
Ruben Mayer; Harshit Gupta; Enrique Saurez
Social sensing services use humans as sensor carriers, sensor operators and sensors themselves in order to provide situation-awareness to applications. This promises to provide a multitude of benefits to the users, for example in the management of natural disasters or in community empowerment. However, current social sensing services depend on Internet connectivity since the services are deployed on central Cloud platforms. In many circumstances, Internet connectivity is constrained, for instance when a natural disaster causes Internet outages or when people do not have Internet access due to economical reasons. In this paper, we propose the emerging Fog Computing infrastructure to become a key-enabler of social sensing services in situations of constrained Internet connectivity. To this end, we develop a generic architecture and API of Fog-enabled social sensing services. We exemplify the usage of the proposed social sensing architecture on a number of concrete use cases from two different scenarios.
distributed event-based systems | 2017
Christian Mayer; Ruben Mayer; Majd Abdo
Today, massive amounts of streaming data from smart devices need to be analyzed automatically to realize the Internet of Things. The Complex Event Processing (CEP) paradigm promises low-latency pattern detection on event streams. However, CEP systems need to be extended with Machine Learning (ML) capabilities such as online training and inference in order to be able to detect fuzzy patterns (e.g. outliers) and to improve pattern recognition accuracy during runtime using incremental model training. In this paper, we propose a distributed CEP system denoted as StreamLearner for ML-enabled complex event detection. The proposed programming model and data-parallel system architecture enable a wide range of real-world applications and allow for dynamically scaling up and out system resources for low-latency, high-throughput event processing. We show that the DEBS Grand Challenge 2017 case study (i.e., anomaly detection in smart factories) integrates seamlessly into the StreamLearner API. Our experiments verify scalability and high event throughput of StreamLearner.
arXiv: Distributed, Parallel, and Cluster Computing | 2017
Ruben Mayer; Ahmad Slo; Muhammad Adnan Tariq; Kurt Rothermel; Manuel Gräber
Distributed Complex Event Processing (DCEP) is a paradigm to infer the occurrence of complex situations in the surrounding world from basic events like sensor readings. In doing so, DCEP operators detect event patterns on their incoming event streams. To yield high operator throughput, data parallelization frameworks divide the incoming event streams of an operator into overlapping windows that are processed in parallel by a number of operator instances. In doing so, the basic assumption is that the different windows can be processed independently from each other. However, consumption policies enforce that events can only be part of one pattern instance; then, they are consumed, i.e., removed from further pattern detection. That implies that the constituent events of a pattern instance detected in one window are excluded from all other windows as well, which breaks the data parallelism between different windows. In this paper, we tackle this problem by means of speculation: Based on the likelihood of an events consumption in a window, subsequent windows may speculatively suppress that event. We propose the SPECTRE framework for speculative processing of multiple dependent windows in parallel. Our evaluations show an up to linear scalability of SPECTRE with the number of CPU cores.
international conference on management of data | 2018
Christian Mayer; Ruben Mayer; Jonas Grunert; Kurt Rothermel; Muhammad Adnan Tariq
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in parallel on a shared graph. These applications generate a dynamic number of localized queries around query hotspots such as popular urban areas. However, existing graph processing systems are not yet tailored towards these properties: The employed methods for graph partitioning and synchronization management disregard query locality and dynamism which leads to high query latency. To this end, we propose the system Q-Graph for multi-query graph analysis that considers query locality on three levels. (i) The query-aware graph partitioning algorithm Q-cut maximizes query locality to reduce communication overhead. (ii) The method for synchronization management, called hybrid barrier synchronization, allows for full exploitation of local queries spanning only a subset of partitions. (iii) Both methods adapt at runtime to changing query workloads in order to maintain and exploit locality. Our experiments show that Q-cut reduces average query latency by up to 57 percent compared to static query-agnostic partitioning algorithms.