Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben Mestril is active.

Publication


Featured researches published by Ruben Mestril.


Proceedings of the National Academy of Sciences of the United States of America | 2008

HSP72 protects against obesity-induced insulin resistance

Jason Chung; Anh Nguyen; Darren C. Henstridge; Anna G. Holmes; M. H. Stanley Chan; Jose L. Mesa; Graeme I. Lancaster; Robert J. Southgate; Clinton R. Bruce; S. Duffy; Ibolya Horváth; Ruben Mestril; Matthew J. Watt; Philip L. Hooper; Bronwyn A. Kingwell; László Vígh; Andrea L. Hevener; Mark A. Febbraio

Patients with type 2 diabetes have reduced gene expression of heat shock protein (HSP) 72, which correlates with reduced insulin sensitivity. Heat therapy, which activates HSP72, improves clinical parameters in these patients. Activation of several inflammatory signaling proteins such as c-jun amino terminal kinase (JNK), inhibitor of κB kinase, and tumor necrosis factor-α, can induce insulin resistance, but HSP 72 can block the induction of these molecules in vitro. Accordingly, we examined whether activation of HSP72 can protect against the development of insulin resistance. First, we show that obese, insulin resistant humans have reduced HSP72 protein expression and increased JNK phosphorylation in skeletal muscle. We next used heat shock therapy, transgenic overexpression, and pharmacologic means to overexpress HSP72 either specifically in skeletal muscle or globally in mice. Herein, we show that regardless of the means used to achieve an elevation in HSP72 protein, protection against diet- or obesity-induced hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance was observed. This protection was tightly associated with the prevention of JNK phosphorylation. These findings identify an essential role for HSP72 in blocking inflammation and preventing insulin resistance in the context of genetic obesity or high-fat feeding.


The FASEB Journal | 2002

Losing heart: the role of apoptosis in heart disease—a novel therapeutic target?

Catherine Gill; Ruben Mestril; Afshin Samali

Cardiovascular disease is a leading cause of death worldwide. In recent years it has emerged that loss of myocardial cells may be a major pathogenic factor. Cell death can occur in a destructive, uncontrolled manner via necrosis or by a highly regulated programmed cell suicide mechanism termed apoptosis. As cell death in conditions such as heart failure and myocardial infarction does not always follow a typically apoptotic pathway, it remains to be established whether it occurs by apoptosis, necrosis, or a novel uncharacter‐ized mechanism combining aspects of both types of cell death. Apoptotic pathways have been well studied in nonmyocytes and it is thought that similar pathways exist in cardiomyocytes. These pathways include death initiated by ligation of membrane‐bound death receptors or death initiated by release of cytochrome c from mitochondria. Increasing evidence supports the existence of these pathways and their regulators in the heart. These regulators include inhibitors of caspases, which are the key enzymes of apoptosis, the Bcl‐2 family of proteins, growth factors, stress proteins, calcium, and oxidants. It is hoped that a better understanding of the pathways of apoptosis and their regulation may yield novel therapeutic targets for cardiovascular disease.—Gill, C., Mestril, R., Samali, A. Losing heart: the role of apoptosis in heart disease—a novel therapeutic target? FASEB J. 16, 135–146 (2002)


Circulation Research | 2006

Ca2+/Calmodulin-Dependent Protein Kinase II Phosphorylation of Ryanodine Receptor Does Affect Calcium Sparks in Mouse Ventricular Myocytes

Tao Guo; Tong Zhang; Ruben Mestril; Donald M. Bers

Previous studies in transgenic mice and with isolated ryanodine receptors (RyR) have indicated that Ca2+-calmodulin-dependent protein kinase II (CaMKII) can phosphorylate RyR and activate local diastolic sarcoplasmic reticulum (SR) Ca2+ release events (Ca2+ sparks) and RyR channel opening. Here we use relatively controlled physiological conditions in saponin-permeabilized wild type (WT) and phospholamban knockout (PLB-KO) mouse ventricular myocytes to test whether exogenous preactivated CaMKII or endogenous CaMKII can enhance resting Ca2+ sparks. PLB-KO mice were used to preclude ancillary effects of CaMKII mediated by phospholamban phosphorylation. In both WT and PLB-KO myocytes, Ca2+ spark frequency was increased by both preactivated exogenous CaMKII and endogenous CaMKII. This effect was abolished by CaMKII inhibitor peptides. In contrast, protein kinase A catalytic subunit also enhanced Ca2+ spark frequency in WT, but had no effect in PLB-KO. Both endogenous and exogenous CaMKII increased SR Ca2+ content in WT (presumably via PLB phosphorylation), but not in PLB-KO. Exogenous calmodulin decreased Ca2+ spark frequency in both WT and PLB-KO (K0.5 ≈100 nmol/L). Endogenous CaMKII (at 500 nmol/L [Ca2+]) phosphorylated RyR as completely in <4 minutes as the maximum achieved by preactivated exogenous CaMKII. After CaMKII activation Ca2+ sparks were longer in duration, and more frequent propagating SR Ca2+ release events were observed. We conclude that CaMKII-dependent phosphorylation of RyR by endogenous associated CaMKII (but not PKA-dependent phosphorylation) increases resting SR Ca2+ release or leak. Moreover, this may explain the enhanced SR diastolic Ca2+ leak and certain triggered arrhythmias seen in heart failure.


Circulation | 2001

Combined and Individual Mitochondrial HSP60 and HSP10 Expression in Cardiac Myocytes Protects Mitochondrial Function and Prevents Apoptotic Cell Deaths Induced by Simulated Ischemia-Reoxygenation

Kurt M. Lin; Brian Lin; Ian Lian; Ruben Mestril; Immo E. Scheffler; Wolfgang H. Dillmann

BackgroundThe mitochondrial heat-shock proteins HSP60 and HSP10 form a mitochondrial chaperonin complex, and previous studies have shown that their increased expression exerts a protective effect against ischemic injury when cardiac myocytes are submitted to simulated ischemia. The more detailed mechanisms by which such a protective effect occurs are currently unclear. We wanted to determine whether HSP60 and HSP10 could exert a protection against simulated ischemia and reoxygenation (SI/RO)–induced apoptotic cell death and whether such protection results from decreased mitochondrial cytochrome c release and caspase-3 activation and from the preservation of ATP levels by preservation of the electron transport chain complexes. In addition, we explored whether increased expression of HSP60 or HSP10 by itself exerts a protective effect. Methods and ResultsWe overexpressed HSP60 and HSP10 together or separately in rat neonatal cardiac myocytes using an adenoviral vector and then subjected the myocytes to SI/RO. Cell death and apoptosis in myocytes were quantified by parameters such as enzyme release, DNA fragmentation, and caspase-3 activation. Overexpression of the combination of HSP60 and HSP10 and of HSP60 or HSP10 individually protected myocytes against apoptosis. This protection is accompanied by decreases in mitochondrial cytochrome c release and in caspase-3 activity and increases in ATP recovery and activities of complex III and IV in mitochondria after SI/RO. ConclusionsThese results suggest that mitochondrial chaperonins HSP60 and HSP10 in combination or individually play an important role in maintaining mitochondrial integrity and capacity for ATP generation, which are the crucial factors in determining survival of cardiac myocytes undergoing ischemia/reperfusion injury.


Journal of Molecular and Cellular Cardiology | 2003

Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells.

Yue-Xin Shan; Tsun-Jui Liu; Hou-Fen Su; Ahmad Samsamshariat; Ruben Mestril; Ping H. Wang

The development of doxorubicin cardiomyopathy involves apoptosis of cardiac muscle cells. This study was carried out to define the roles of two heat-shock proteins, Hsp10 and Hsp60, on doxorubicin-induced apoptosis in primary cardiomyocytes. Doxorubicin induces apoptosis of cardiomyocytes by activating mitochondria apoptosis signaling. Transducing cardiomyocytes with Hsp10 or Hsp60 with adenoviral vector suppressed the occurrence of apoptosis in the doxorubicin-treated cardiomyocytes. Overexpression of Hsp10 and Hsp60 increased the abundance of the anti-apoptotic Bcl-xl and Bcl-2, and reduced the protein content of the pro-apoptotic Bax. Hsp60 overexpression also significantly reduced doxorubicin induction of Bad, whereas overexpression of Hsp10 did not alter the expression of Bad in the doxorubicin-treated cells. Overexpression of Hsp10 and Hsp60, respectively, stabilized mitochondrial cross-membrane potential, inhibited Caspase 3, and suppressed PARP. These findings indicate that overexpression of Hsp10 and Hsp60 differentially modulated Bcl-2 family and in turn attenuate doxorubicin-induced cardiac muscle death. The effects of Hsp10 and Hsp60 on Bcl-2 family could not be explained by the abundance of Bcl-2 family mRNA levels. Hsp60 interacted with Bcl-xl and Bax in the cardiomyocytes in vivo. The effect of Hsp10 and Hsp60 on the abundance of Bcl-xl could not be blocked by cycloheximide. Moreover, Hsp10 and Hsp60 inhibited ubiquitination of Bcl-xl. These findings suggest that Hsp10 and Hsp60 modulated post-translational modification of Bcl-xl. Antisense Hsp60 reduced the abundance of endogenous Hsp60 in cardiomyocytes and amplified the cytotoxicity of doxorubicin. These data provide a novel link between Hsp10/Hsp60 and cardiac protection in doxorubicin cardiomyopathy.


The FASEB Journal | 2006

Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity

Caroline S. Broome; Anna C. Kayani; Jesus Palomero; Wolfgang H. Dillmann; Ruben Mestril; Malcolm J. Jackson; Anne McArdle

Skeletal muscle aging is characterized by atrophy, a deficit in specific force generation, increased susceptibility to injury, and incomplete recovery after severe injury. The ability of muscles of old mice to produce heat shock proteins (HSPs) in response to stress is severely diminished. Studies in our laboratory using HSP70 overexpressor mice demonstrated that lifelong overexpression of HSP70 in skeletal muscle provided protection against damage and facilitated successful recovery after damage in muscles of old mice. The mechanisms by which HSP70 provides this protection are unclear. Aging is associated with the accumulation of oxidation products, and it has been proposed that this may play a major role in age‐related muscle dysfunction. Muscles of old wild‐type (WT) mice demonstrated increased lipid peroxidation, decreased glutathione content, increased catalase and superoxide dismutase (SOD) activities, and an inability to activate nuclear factor (NF)‐κB after contractions in comparison with adult WT mice. In contrast, levels of lipid peroxidation, glutathione content, and the activities of catalase and SOD in muscles of old HSP70 overexpressor mice were similar to adult mice and these muscles also maintained the ability to activate NF‐κB after contractions. These data provide an explanation for the preservation of muscle function in old HSP70 overexpressor mice.—Broome, C. S., Kayani, A. C., Palomero, J., Dillmann, W. H., Mestril, R., Jackson, M. J., McArdle, A. Effect of lifelong overexpression of HSP70 in skeletal muscle on age‐related oxidative stress and adaptation after nondamaging contractile activity. FASEB J. 20, E855–E860 (2006)


The FASEB Journal | 2005

Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts

Jinbao Liu; Quanhai Chen; Wei Huang; Kathleen M. Horak; Hanqiao Zheng; Ruben Mestril; Xuejun Wang

Protein misfolding and aberrant aggregation are associated with many severe disorders, such as neural degenerative diseases, desmin‐related myopathy (DRM), and congestive heart failure. Intrasarcoplasmic amyloidosis and increased ubiquitinated proteins are observed in human failing hearts. The pathogenic roles of these derangements in the heart remain unknown. The ubiquitin‐proteasome system (UPS) plays a central role in intracellular proteolysis and regulates critical cellular processes. In cultured cells, aberrant aggregation by a mutant (MT) or misfolded protein impairs the UPS. However, this has not been demonstrated in intact animals, and it is unclear how the UPS is impaired. Cross‐breeding UPS reporter mice with a transgenic mouse model of DRM featured by aberrant protein aggregation in cardiomyocytes, we found that overexpression of MT‐desmin but not normal desmin protein impairs UPS proteolytic function in the heart. The primary defect does not appear to be in the ubiquitination or the proteolytic activity of the 20S proteasome, because ubiquitinated proteins and the peptidase activities of 20S proteasomes were significantly increased rather than decreased in the DRM heart. Therefore, the defect resides apparently in the entry of ubiquitinated proteins into the 20S proteasome. Consistent with this notion, key components (Rpt3 and Rpt5) of 19S proteasomes were markedly decreased, while major components of 20S proteasomes were increased. Additional experiments with HEK cells suggest that proteasomal malfunction observed in MT‐desmin hearts is not secondary to cardiac malfunction or to disruption of desmin filaments. Thus, UPS impairment may represent an important pathogenic mechanism underlying cardiac disorders with abnormal protein aggregation.


Journal of Biological Chemistry | 2006

Differential Effects of Mitochondrial Heat Shock Protein 60 and Related Molecular Chaperones to Prevent Intracellular β-Amyloid-induced Inhibition of Complex IV and Limit Apoptosis

Vimal Veereshwarayya; Pravir Kumar; Kenneth M. Rosen; Ruben Mestril; Henry W. Querfurth

Defects in mitochondrial oxidative metabolism, in particular decreased activity of cytochrome c oxidase, have been reported in Alzheimer disease tissue and in cultured cells that overexpress amyloid precursor protein. Mitochondrial dysfunction contributes to neurodegeneration in Alzheimer disease partly through formation of reactive oxygen species and the release of sequestered molecules that initiate programmed cell death pathways. The heat shock proteins (HSP) are cytoprotective against a number of stressors, including accumulations of misfolded proteins and reactive oxygen species. We reported on the property of Hsp70 to protect cultured neurons from cell death caused by intraneuronal β-amyloid. Here we demonstrate that Hsp60, Hsp70, and Hsp90 both alone and in combination provide differential protection against intracellular β-amyloid stress through the maintenance of mitochondrial oxidative phosphorylation and functionality of tricarboxylic acid cycle enzymes. Notably, β-amyloid was found to selectively inhibit complex IV activity, an effect selectively neutralized by Hsp60. The combined effect of HSPs was to reduce the free radical burden, preserve ATP generation, decrease cytochrome c release, and prevent caspase-9 activation, all important mediators of β-amyloid-induced neuronal dysfunction and death.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Specific heat shock proteins protect microtubules during simulated ischemia in cardiac myocytes

Wolfgang F. Bluhm; Jody L. Martin; Ruben Mestril; Wolfgang H. Dillmann

The protective effects of heat shock proteins (HSPs) during myocardial ischemia are now well documented, but little is known about the mechanisms of protection and the specificity of different HSPs. Because cytoskeletal injury plays a crucial role in the pathogenesis of irreversible ischemic damage, we tested whether overexpression of specific HSPs protects the integrity of microtubules during simulated ischemia in rat neonatal cardiac myocytes. Overexpression of specific HSPs was achieved by adenovirus-mediated transgene expression. Damage was assessed by comparing control cells to cells that were subjected to a simulated ischemia protocol. Microtubular integrity was measured by indirect immunofluorescence, confocal microscopy, and image analysis. Within 14 h of simulated ischemia, microtubular integrity decreased significantly in uninfected myocytes (from 24.6 ± 1.2 to 13.2 ± 0.4) and in myocytes infected with a control virus that expressed no transgene (from 25.9 ± 1.8 to 13.1 ± 1.4). Microtubular integrity after ischemia was significantly better preserved in cells overexpressing constitutive Hsp70 (21.7 ± 1.6) or αB-crystallin (18.0 ± 2.7) but not in cells overexpressing inducible Hsp70 (11.5 ± 0.8) or Hsp27 (14.0 ± 2.2). We conclude that specific HSPs protect the microtubules during simulated cardiac ischemia.


Experimental Neurology | 2004

Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord

Jason B. Carmel; Osamu Kakinohana; Ruben Mestril; Wise Young; Martin Marsala; Ronald P. Hart

Spinal ischemia is a frequent cause of paralysis. Here we explore the biological basis of ischemic preconditioning (IPC), the phenomenon in which a brief period of ischemia can confer protection against subsequent longer and normally injurious ischemia, to identify mediators of endogenous neuroprotection. Using microarrays, we examined gene expression changes induced by brief spinal ischemia using a rat balloon occlusion model. Among the nearly 5000 genes assayed, relatively few showed two-fold changes, and three groups stood out prominently. The first group codes for heat shock protein 70, which is induced selectively and robustly at 30 min after brief ischemia, with increases up to 100-fold. A second group encodes metallothioneins 1 and 2. These mRNAs are increased at 6 and 12 h after ischemia, up to 12-fold. The third group codes for a group of immediate-early genes not previously associated with spinal ischemia: B-cell translocation gene 2 (BTG2), the transcription factors early growth response 1 (egr-1) and nerve growth factor inducible B (NGFI-B), and a mitogen-activated protein kinase phosphatase, ptpn16, an important cell signaling regulator. These mRNAs peak at 30 min and return to baseline or are decreased 6 h after ischemia. Several other potentially protective genes cluster with these induced mRNAs, including small heat shock proteins, and many have not been previously associated with IPC. These results provide both putative mediators of IPC and molecular targets for testing preconditioning therapies.

Collaboration


Dive into the Ruben Mestril's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jody L. Martin

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Megan Koh

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping H. Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pravir Kumar

Delhi Technological University

View shared research outputs
Top Co-Authors

Avatar

Bysani Chandrasekar

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge