Ruben Pauwels
Chulalongkorn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruben Pauwels.
European Journal of Radiology | 2012
Ruben Pauwels; Jilke Beinsberger; Bruno Collaert; C Theodorakou; Jessica Rogers; A Walker; Lesley Cockmartin; Hilde Bosmans; Reinhilde Jacobs; Ria Bogaerts; Keith Horner
OBJECTIVE To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. MATERIALS AND METHODS Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100 H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. RESULTS Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. CONCLUSIONS The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements.
European Journal of Radiology | 2009
M. Loubele; Ria Bogaerts; E. Van Dijck; Ruben Pauwels; S. Vanheusden; Paul Suetens; Guy Marchal; G. Sanderink; Reinhilde Jacobs
OBJECTIVES To compare the effective dose levels of cone beam computed tomography (CBCT) for maxillofacial applications with those of multi-slice computed tomography (MSCT). STUDY DESIGN The effective doses of 3 CBCT scanners were estimated (Accuitomo 3D, i-CAT, and NewTom 3G) and compared to the dose levels for corresponding image acquisition protocols for 3 MSCT scanners (Somatom VolumeZoom 4, Somatom Sensation 16 and Mx8000 IDT). The effective dose was calculated using thermoluminescent dosimeters (TLDs), placed in a Rando Alderson phantom, and expressed according to the ICRP 103 (2007) guidelines (including a separate tissue weighting factor for the salivary glands, as opposed to former ICRP guidelines). RESULTS Effective dose values ranged from 13 to 82 microSv for CBCT and from 474 to 1160 microSv for MSCT. CBCT dose levels were the lowest for the Accuitomo 3D, and highest for the i-CAT. CONCLUSIONS Dose levels for CBCT imaging remained far below those of clinical MSCT protocols, even when a mandibular protocol was applied for the latter, resulting in a smaller field of view compared to various CBCT protocols. Considering this wide dose span, it is of outmost importance to justify the selection of each of the aforementioned techniques, and to optimise the radiation dose while achieving a sufficient image quality. When comparing these results to previous dosimetric studies, a conversion needs to be made using the latest ICRP recommendations.
European Journal of Radiology | 2010
Xin Liang; Reinhilde Jacobs; Bassam Hassan; Limin Li; Ruben Pauwels; Livia Corpas; Paulo Henrique Couto Souza; Wendy Martens; Maryam Shahbazian; Arie Alonso; Ivo Lambrichts
AIMS To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. MATERIALS AND METHODS One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. RESULTS Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p=0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p=0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. CONCLUSIONS CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.
European Journal of Radiology | 2010
Xin Liang; Ivo Lambrichts; Yi Sun; Kathleen Denis; Bassam Hassan; Limin Li; Ruben Pauwels; Reinhilde Jacobs
AIM The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. MATERIALS AND METHODS A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. RESULTS The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. CONCLUSION The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.
Clinical Oral Implants Research | 2011
Olivia Nackaerts; Frederik Maes; Hua Yan; Paulo Couto Souza; Ruben Pauwels; Reinhilde Jacobs
OBJECTIVES The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. MATERIAL AND METHODS A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. RESULTS Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. CONCLUSIONS The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning.
British Journal of Radiology | 2012
C Theodorakou; A Walker; Keith Horner; Ruben Pauwels; Ria Bogaerts; Reinhilde Jacobs
OBJECTIVES Cone beam CT (CBCT) is an emerging X-ray technology applied in dentomaxillofacial imaging. Previous published studies have estimated the effective dose and radiation risks using adult anthropomorphic phantoms for a wide range of CBCT units and imaging protocols. METHODS Measurements were made five dental CBCT units for a range of imaging protocols, using 10-year-old and adolescent phantoms and thermoluminescent dosimeters. The purpose of the study was to estimate paediatric organ and effective doses from dental CBCT. RESULTS The average effective doses to the 10-year-old and adolescent phantoms were 116 μSv and 79 μSv, respectively, which are similar to adult doses. The salivary glands received the highest organ dose and there was a fourfold increase in the thyroid dose of the 10-year-old relative to that of the adolescent because of its smaller size. The remainder tissues and salivary and thyroid glands contributed most significantly to the effective dose for a 10-year-old, whereas for an adolescent the remainder tissues and the salivary glands contributed the most significantly. It was found that the percentage attributable lifetime mortality risks were 0.002% and 0.001% for a 10-year-old and an adolescent patient, respectively, which are considerably higher than the risk to an adult having received the same doses. CONCLUSION It is therefore imperative that dental CBCT examinations on children should be fully justified over conventional X-ray imaging and that dose optimisation by field of view collimation is particularly important in young children.
Clinical Oral Implants Research | 2013
Ruben Pauwels; Harry Stamatakis; Hilde Bosmans; Ria Bogaerts; Reinhilde Jacobs; Keith Horner; Kostas Tsiklakis
OBJECTIVES To quantify metal artifacts obtained from a wide range of cone beam computed tomography (CBCT) devices and exposure protocols, to compare their tolerance to metals of different densities, and to provide insights regarding the possible implementation of metal artifact analysis into a QC protocol for CBCT. MATERIALS AND METHODS A customized polymethyl methacrylate (PMMA) phantom, containing titanium and lead rods, was fabricated. It was scanned on 13 CBCT devices and one multi-slice computed tomography (MSCT) device, including high-dose and low-dose exposure protocols. Artifacts from the rods were assessed by two observers by measuring the standard deviation of voxel values in the vicinity of the rods, and normalizing this value to the percentage of the theoretical maximum standard deviation. RESULTS For CBCT datasets, artifact values ranged between 6.1% and 27.4% for titanium, and between 10.% and 43.7% for lead. Most CBCT devices performed worse than MSCT for titanium artifacts, but all of them performed better for lead artifacts. In general, no clear improvement of metal artifacts was seen for high-dose protocols, although certain devices showed some artifact reduction for large FOV or high exposure protocols. CONCLUSIONS Regions in the vicinity of the metal rods were moderately or gravely affected, particularly in the area between the rods. In practice, the CBCT user has very limited possibilities to reduce artifacts. Researchers and manufacturers need to combine their efforts in optimizing exposure factors and implementing metal artifact reduction algorithms.
British Journal of Radiology | 2013
Ruben Pauwels; Olivia Nackaerts; Norbert Bellaiche; Harry Stamatakis; Kostas Tsiklakis; Adrian Walker; Hilde Bosmans; Ria Bogaerts; Reinhilde Jacobs; Keith Horner
OBJECTIVE The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. METHODS A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cm(-3), HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. RESULTS Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. CONCLUSION Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. ADVANCES IN KNOWLEDGE The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated.
Dentomaxillofacial Radiology | 2015
Ruben Pauwels; Reinhilde Jacobs; Steven R. Singer; Muralidhar Mupparapu
CBCT is a widely applied imaging modality in dentistry. It enables the visualization of high-contrast structures of the oral region (bone, teeth, air cavities) at a high resolution. CBCT is now commonly used for the assessment of bone quality, primarily for pre-operative implant planning. Traditionally, bone quality parameters and classifications were primarily based on bone density, which could be estimated through the use of Hounsfield units derived from multidetector CT (MDCT) data sets. However, there are crucial differences between MDCT and CBCT, which complicates the use of quantitative gray values (GVs) for the latter. From experimental as well as clinical research, it can be seen that great variability of GVs can exist on CBCT images owing to various reasons that are inherently associated with this technique (i.e. the limited field size, relatively high amount of scattered radiation and limitations of currently applied reconstruction algorithms). Although attempts have been made to correct for GV variability, it can be postulated that the quantitative use of GVs in CBCT should be generally avoided at this time. In addition, recent research and clinical findings have shifted the paradigm of bone quality from a density-based analysis to a structural evaluation of the bone. The ever-improving image quality of CBCT allows it to display trabecular bone patterns, indicating that it may be possible to apply structural analysis methods that are commonly used in micro-CT and histology.
Dentomaxillofacial Radiology | 2015
Ruben Pauwels; K Araki; Jeffrey H. Siewerdsen; S S Thongvigitmanee
As CBCT is widely used in dental and maxillofacial imaging, it is important for users as well as referring practitioners to understand the basic concepts of this imaging modality. This review covers the technical aspects of each part of the CBCT imaging chain. First, an overview is given of the hardware of a CBCT device. The principles of cone beam image acquisition and image reconstruction are described. Optimization of imaging protocols in CBCT is briefly discussed. Finally, basic and advanced visualization methods are illustrated. Certain topics in these review are applicable to all types of radiographic imaging (e.g. the principle and properties of an X-ray tube), others are specific for dental CBCT imaging (e.g. advanced visualization techniques).