Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben Sakrabani is active.

Publication


Featured researches published by Ruben Sakrabani.


Environmental Pollution | 2012

Fate of triclosan in field soils receiving sewage sludge.

E. Butler; M.J. Whelan; Ruben Sakrabani; R. van Egmond

The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues.


Environmental Toxicology and Chemistry | 2011

Effects of triclosan on soil microbial respiration.

Emma Butler; Michael J. Whelan; Karl Ritz; Ruben Sakrabani; Roger van Egmond

The antimicrobial substance triclosan has widespread use in personal care products and can enter the terrestrial environment if sewage sludge is applied to soil. The inhibitory effects of triclosan on basal and substrate-induced respiration (SIR) of three different soils were investigated. Soils were dosed and later redosed with four nominal triclosan concentrations, and respiration rates were measured over time. In each soil, a significant depression in basal respiration was noted after initial dosing, followed by a recovery. The initial extent of respiration inhibition was positively related to the triclosan dose, i.e., respiration was most inhibited at highest triclosan concentration. Differences in respiration inhibition between soils at equivalent dose were inversely correlated with organic matter and clay content, suggesting that the bioavailability of triclosan might have been reduced by sorption to organic carbon or by physical protection in micropores. Substrate-induced respiration was also reduced by the addition of triclosan and subsequently recovered. After redosing with triclosan, basal respiration was enhanced in all soils, suggesting that it was acting as a substrate. However, redosing resulted in SIR inhibition in all treatments above 10 mg triclosan kg(-1) in all three soils, although all soils appeared to be more resistant to perturbation than following initial dosing. The present study suggests that triclosan inhibits soil respiration but that a subsequent acclimation of the microbial community occurs.


Journal of Agricultural and Food Chemistry | 2016

Toward the Standardization of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison

Hans Jörg Bachmann; Thomas D. Bucheli; Alba Dieguez-Alonso; Daniele Fabbri; Heike Knicker; Hans-Peter Schmidt; Axel Ulbricht; Roland Becker; Alessandro Buscaroli; Diane Buerge; Andrew Cross; Dane Dickinson; Akio Enders; Valdemar I. Esteves; Michael W.H. Evangelou; Guido Fellet; K. Friedrich; Gabriel Gasco Guerrero; Bruno Glaser; Ulrich Michael Hanke; Kelly Hanley; Isabel Hilber; Dimitrios Kalderis; Jens Leifeld; Ondrej Masek; Jan Mumme; Marina Paneque Carmona; Roberto Calvelo Pereira; Frédéric Rees; Alessandro G. Rombolà

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Science of The Total Environment | 2009

Biodegradability of organic matter associated with sewer sediments during first flush

Ruben Sakrabani; Jes Vollertsen; Richard Ashley; Thorkild Hvitved-Jacobsen

The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs.


Chemosphere | 2012

The effect of triclosan on microbial community structure in three soils

E. Butler; M.J. Whelan; Karl Ritz; Ruben Sakrabani; R. van Egmond

The application of sewage sludge to land can expose soils to a range of associated chemical toxicants. In this paper we explore the effects of the broad spectrum anti-microbial compound triclosan on the phenotypic composition of the microbial communities of three soils of contrasting texture (loamy sand, sandy loam and clay) using phospholipid fatty-acid (PLFA) analysis. Each soil type was dosed and subsequently re-dosed 6 weeks later with triclosan at five nominal concentrations in microcosms (10, 100, 500, 1000 mg kg(-1) and a zero-dose control). PLFA profiles were analysed using multivariate statistics focussing on changes in the soil phenotypic community structure. Additionally, ratios of fungal:bacterial PLFA indicators and cyclo:mono-unsaturated PLFAs (a common stress indicator) were calculated. It was hypothesised that triclosan addition would alter the community structure in each soil with a particular effect on the fungal:bacterial ratio, since bacteria are likely to be more susceptible to triclosan than fungi. It was also hypothesised that the PLFA response to re-dosing would be suppressed due to acclimation. Although the microbial community structure changed over the course of the experiment, the response was complex. Soil type and time emerged as the most important explanatory factors. Principal component analysis was used to detect phenotypic responses to different doses of triclosan in each soil. As expected, there was a significant increase in the fungal:bacterial ratio with triclosan dose especially in treatments with the highest nominal concentrations. Furthermore, the PLFA response to re-dosing was negligible in all soils confirming the acclimation hypothesis.


Applied and Environmental Soil Science | 2013

Characterisation of Organomineral Fertilisers Derived from Nutrient-Enriched Biosolids Granules

Diogenes L. Antille; Ruben Sakrabani; Sean F. Tyrrel; Minh Son Le; R.J. Godwin

Organomineral fertilisers (OMFs) were produced by coating biosolids granules with urea and potash. Two OMF formulations with N : P2O5 : K2O compositions: 10 : 4 : 4 (OMF10) and 15 : 4 : 4 (OMF15) were developed for application in grassland and arable crops. Routine fertiliser analyses were conducted on four batches of OMF and biosolids granules and compared with a sample of urea to determine key physical and chemical properties of the materials which affect handling and spreading, soil behaviour, and fertiliser value. Bulk and particle densities were in the range of 608 to 618 kg m−3, and 1297 to 1357 kg m−3, respectively. Compression tests showed that OMF particles undergo deformation followed by multiple failures without disintegration of the granules when vertical load was applied. Static particle strength was between 1.18 and 4.33 N mm−2 depending on the particle diameter. The use of a model for fertiliser particle distribution studies showed that OMF granules should be between 1.10 and 5.50 mm in diameter with about 80% of the particles in the range of 2.25 to 4.40 mm to enable application at 18 m tramline spacing. This research utilises novel technology to improve the fertiliser value of biosolids, reduce disposal costs, and deliver a range of environmental benefits associated with recycling.


Journal of Environmental Engineering and Landscape Management | 2017

Synergistic use of peat and charred material in growing media – an option to reduce the pressure on peatlands?

Ju¨rgen Kern; Priit Tammeorg; Merrit Shanskiy; Ruben Sakrabani; Heike Knicker; Claudia Kammann; Eeva-Maria Tuhkanen; Geerd Smidt; Munoo Prasad; Kari Tiilikkala; Saran Sohi; G. Gascó; Christoph Steiner; Bruno Glaser

AbstractPeat is used as a high quality substrate for growing media in horticulture. However, unsustainable peat extraction damages peatland ecosystems, which disappeared to a large extent in Central and South Europe. Furthermore, disturbed peatlands are becoming a source of greenhouse gases due to drainage and excavation. This study is the result of a workshop within the EU COST Action TD1107 (Biochar as option for sustainable resource management), held in Tartu (Estonia) in 2015. The view of stakeholders were consulted on new biochar-based growing media and to what extent peat may be replaced in growing media by new compounds like carbonaceous materials from thermochemical conversion. First positive results from laboratory and greenhouse experiments have been reported with biochar content in growing media ranging up to 50%. Various companies have already started to use biochar as an additive in their growing media formulations. Biochar might play a more important role in replacing peat in growing media, ...


Applied and Environmental Soil Science | 2013

Field-Scale Evaluation of Biosolids-Derived Organomineral Fertilisers Applied to Ryegrass (Lolium perenne L.) in England

Diogenes L. Antille; Ruben Sakrabani; R.J. Godwin

A field-scale experiment was conducted to compare the suitability of two organomineral fertiliser (OMF) formulations (OMF10—10 : 4 : 4 and OMF15—15 : 4 : 4) with urea and biosolids granules applied to perennial ryegrass. Results showed a 25% to 30% increase in dry matter yield (DMY) with application of OMF compared with biosolids granules but about 5% lower than urea. For OMF, an average input of yielded which was similar to that of urea; whereas, for biosolids, a yield of required an input of but DMY was lower (). Agronomic efficiencies with OMF were in the range of 26 to 35 kg , approximately double those of biosolids but about 5% to 10% lower than urea. Soil extractable P levels remained close to constant; therefore, soil P Index was not affected by OMF application. This result supported the reasons for the proposed OMF formulations and demonstrated the advantage of the products compared with biosolids which induced an increase (), in soil extractable P. The application of OMF at rates which do not exceed the optimum N rate for the grass crop should not induce significant changes in soil P Index including application to soils with satisfactory P levels. OMF application strategies are discussed which will enable minimising environmental concerns and maximising fertiliser use efficiency.


Communications in Soil Science and Plant Analysis | 2014

Effects of Biosolids-Derived Organomineral Fertilizers, Urea, and Biosolids Granules on Crop and Soil Established with Ryegrass (Lolium perenne L.)

Diogenes L. Antille; Ruben Sakrabani; R.J. Godwin

A pot scale trial investigated the agronomic performance of two organomineral fertilizers (OMF15—15:4:4 and OMF10—10:4:4) in comparison with urea and biosolids granules to establish ryegrass (Lolium perenne L.). Two soils of contrasting characteristics and nitrogen (N) application rates in the range of 0–300 kg ha−1 were used over a period of 3 years. Fertilizer effects were determined on: (1) dry matter yield (DMY) and crop responses, (2) nitrogen use efficiency (NUE), and (3) selected soil chemical properties. Ryegrass responded linearly (R2 ≥ 0.75; P < 0.001) to organomineral fertilizers (OMF) application increasing DMY by 2–27% compared with biosolids but to a lesser extent than urea (range: 17–55%). NUE was related to concentration of readily available N in the fertilizer: urea and OMF showed significantly (P < 0.05) greater N recoveries than biosolids. Total N in soil and soil organic matter showed increments (P < 0.05), which depended on the organic-N content in the fertilizer applied. Soil extractable P levels remained close to constant after 3 years of continuous OMF application but increased with biosolids and decreased with urea, respectively (P < 0.05). The application of biosolids changed soil P Index from 5 to 6; hence, there is a need to monitor soil P status. Both OMF10 and OMF15 formulations are suitable for application in ryegrass.


Chemosphere | 2014

Influence and interactions of multi-factors on the bioavailability of PAHs in compost amended contaminated soils

Guozhong Wu; Xingang Li; Cedric Kechavarzi; Ruben Sakrabani; Hong Sui; Frédéric Coulon

Compost amendment to contaminated soils is a potential approach for waste recycling and soil remediation. The relative importance and interactions of multiple factors on PAH bioavailability in soils were investigated using conjoint analysis and five-way analysis of variance. Results indicated that soil type and contact time were the two most significant factors influencing the PAH bioavailability in amended soils. The other two factors (compost type and ratio of compost addition) were less important but their interactions with other factors were significant. Specifically the 4-factor interactions showed that compost addition stimulated the degradation of high molecular PAHs at the initial stage (3 month) by enhancing the competitive sorption within PAH groups. Such findings suggest that a realistic decision-making towards hydrocarbon bioavailability assessment should consider interactions among various factors. Further to this, this study demonstrated that compost amendment can enhance the removal of recalcitrant hydrocarbons such as PAHs in contaminated soils.

Collaboration


Dive into the Ruben Sakrabani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diogenes L. Antille

University of Southern Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Ritz

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge