Rubén Torices
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rubén Torices.
Annals of Botany | 2016
José M. Gómez; Rubén Torices; Juan Lorite; Christian Peter Klingenberg; Francisco Perfectti
BACKGROUND AND AIMS Brassicaceae is one of the most diversified families in the angiosperms. However, most species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral morphospace, examining how corolla shape variation (an estimation of developmental robustness), integration and disparity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this evolution. METHODS Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the relationship between pollination niche and the attributes of corolla shape. KEY RESULTS Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in those taxa visited mostly by hovering long-tongued flies and long-tongued large bees. CONCLUSIONS Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche. Even in a plant clade having a very generalized pollination system and exhibiting a conserved floral bauplan, pollinators can drive the evolution of important developmental attributes of corolla shape.
Biological Invasions | 2015
Soraya Constán-Nava; Santiago Soliveres; Rubén Torices; Lluís Serra; Andreu Bonet
Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.
Applications in Plant Sciences | 2015
Rubén Torices; A. Jesús Muñoz-Pajares
Premise of the study: Organisms usually show intercorrelations between all or some of their components leading to phenotypic integration, which may have deep consequences on the evolution of phenotypes. One of the main difficulties with phenotypic integration studies is how to correct the integration measures for size. This has been considered a challenging task. In this paper, we introduce an R package (PHENIX: PHENotypic Integration indeX), in which we provide functions to estimate a size-controlled phenotypic integration index, a bootstrapping method to calculate confidence intervals, and a randomization method to simulate null distributions and test the statistical significance of the integration. Methods and Results: PHENIX is an open source package written in R. As usual for R packages, the manual and sample data are available at: http://cran.r-project.org/web/packages/PHENIX/index.html. Functions included in this package easily estimate phenotypic integration by controlling a third variable (e.g., the size of the studied organ). Conclusions: PHENIX helps to estimate and test the statistical significance of the magnitude of integration using one of the most-used methodological approaches, while taking size into account.
American Journal of Botany | 2014
Ana Afonso; Sílvia Castro; João Loureiro; Lucie Mota; José Cerca de Oliveira; Rubén Torices
UNLABELLED • PREMISE OF THE STUDY In heterocarpy, fruits with different morphologies have been associated with alternative strategies of dispersal, germination, dormancy, and seedling competitive ability. In heterocarpic species, it is common to find fruits with competitive or dispersal syndromes. The competitive advantage of nondispersing fruits has been frequently attributed to their larger size, but recent studies have suggested that this could also be mediated by germination time. The main objective of our study was to investigate which factor, fruit type or germination time, most affects plant performance and, consequently, competitive ability, using the heterocarpic species Anacyclus clavatus• METHODS To explore the effects of achene type and germination time on plant performance, we followed an innovative experimental approach including two experiments: one allowing for differences in germination time, and the other evaluating the effect of achene type alone by synchronizing germination time.• KEY RESULTS A significant effect of germination time on several postdispersal life-history traits was observed: Achenes that germinated earlier produced plants with higher biomass and reproductive effort. When germination time was controlled, no significant differences were observed in any of the traits.• CONCLUSIONS The competitive advantage of achenes with different morphologies was mainly mediated by germination time and not by differences in size or other intrinsic traits. The consequences of these results are discussed in light of the dispersal-competition trade-off. Our experimental approach (i.e., the synchronization of germination time) revealed the importance of manipulative experiments for testing the effects of germination time on plant survival and performance.
Oecologia | 2016
Lucía DeSoto; David Tutor; Rubén Torices; Susana Rodríguez-Echeverría; Cristina Nabais
An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.
Genome Biology and Evolution | 2016
Lucie Mota; Rubén Torices; João Loureiro
Chromosome number changes during the evolution of angiosperms are likely to have played a major role in speciation. Their study is of utmost importance, especially now, as a probabilistic model is available to study chromosome evolution within a phylogenetic framework. In the present study, likelihood models of chromosome number evolution were fitted to the largest family of flowering plants, the Asteraceae. Specifically, a phylogenetic supertree of this family was used to reconstruct the ancestral chromosome number and infer genomic events. Our approach inferred that the ancestral chromosome number of the family is n = 9. Also, according to the model that best explained our data, the evolution of haploid chromosome numbers in Asteraceae was a very dynamic process, with genome duplications and descending dysploidy being the most frequent genomic events in the evolution of this family. This model inferred more than one hundred whole genome duplication events; however, it did not find evidence for a paleopolyploidization at the base of this family, which has previously been hypothesized on the basis of sequence data from a limited number of species. The obtained results and potential causes of these discrepancies are discussed.
Nature Communications | 2018
Rubén Torices; José M. Gómez; John R. Pannell
Pollinators tend to be preferentially attracted to large floral displays that may comprise more than one plant in a patch. Attracting pollinators thus not only benefits individuals investing in advertising, but also other plants in a patch through a ‘magnet’ effect. Accordingly, there could be an indirect fitness advantage to greater investment in costly floral displays by plants in kin-structured groups than when in groups of unrelated individuals. Here, we seek evidence for this strategy by manipulating relatedness in groups of the plant Moricandia moricandioides, an insect-pollinated herb that typically grows in patches. As predicted, individuals growing with kin, particularly at high density, produced larger floral displays than those growing with non-kin. Investment in attracting pollinators was thus moulded by the presence and relatedness of neighbours, exemplifying the importance of kin recognition in the evolution of plant reproductive strategies.Plants can recognize nearby kin and alter their growth in response. Here, Torices et al. demonstrate that flower production can also be sensitive to social context, with plants producing larger floral displays in the presence of relatives, which may increase attraction of pollinators to the group.
Applications in Plant Sciences | 2018
Yves Cuenot; José M. Gómez; Adela González-Megías; John R. Pannell; Rubén Torices
Premise of the Study Polymorphic microsatellite markers were developed to study population structure and mating patterns of the monocarpic herb Moricandia moricandioides (Brassicaceae). Methods and Results Illumina MiSeq sequencing was used to develop a panel of 15 polymorphic microsatellite markers that were tested across 77 individuals from three populations on the Iberian Peninsula. All markers were polymorphic in at least two studied populations, and the number of alleles ranged from one to 11 per locus. The levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.153 to 0.865, respectively. Nine and 11 loci were successfully amplified in the congeneric species M. arvensis and M. foetida, respectively. Conclusions The 15 microsatellite markers will be useful for population genetic studies of the genus Moricandia. These markers will serve as a useful tool for exploring population structure and mating patterns of M. moricandioides.
Oikos | 2012
Santiago Soliveres; Rubén Torices; Fernando T. Maestre
Perspectives in Plant Ecology Evolution and Systematics | 2014
Santiago Soliveres; Fernando T. Maestre; Matthew A. Bowker; Rubén Torices; José L. Quero; Miguel García-Gómez; Alex P. Cea; Daniel Coaguila; David J. Eldridge; Carlos I. Espinosa; Frank Hemmings; Jorge Monerris; Matthew Tighe; Manuel Delgado-Baquerizo; Cristina Escolar; Pablo García-Palacios; Beatriz Gozalo; Victoria Ochoa; Julio Blones; Mchich Derak; Wahida Ghiloufi; Julio R. Gutiérrez; Rosa M. Hernández; Zouhaier Noumi