Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruben van Hooidonk is active.

Publication


Featured researches published by Ruben van Hooidonk.


Global Change Biology | 2015

Operationalizing resilience for adaptive coral reef management under global environmental change

Kenneth R. N. Anthony; Paul Marshall; Ameer Abdulla; Roger Beeden; Christopher Bergh; Ryan Black; C. Mark Eakin; Edward T. Game; Margaret Gooch; Nicholas A. J. Graham; Alison Green; Scott F. Heron; Ruben van Hooidonk; Cheryl Knowland; Sangeeta Mangubhai; Nadine Marshall; Jeffrey A. Maynard; Peter McGinnity; Elizabeth Mcleod; Peter J. Mumby; Magnus Nyström; David Obura; Jamie Oliver; Hugh P. Possingham; Robert L. Pressey; Gwilym Rowlands; Jerker Tamelander; David Wachenfeld; Stephanie Wear

Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.


Scientific Reports | 2016

Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012

Scott F. Heron; Jeffrey A. Maynard; Ruben van Hooidonk; C. Mark Eakin

Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985–2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985–91 and 2006–12 – a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.


Scientific Reports | 2016

Local-scale projections of coral reef futures and implications of the Paris Agreement

Ruben van Hooidonk; Jeffrey A. Maynard; Jerker Tamelander; Jamison M. Gove; Gabby N. Ahmadia; Laurie Raymundo; Gareth J. Williams; Scott F. Heron; Serge Planes

Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.


Philosophical Transactions of the Royal Society B | 2016

Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature

Morgan E. Eisenlord; Maya L. Groner; Reyn Yoshioka; Joel K. Elliott; Jeffrey A. Maynard; Steven Fradkin; Margaret Turner; Katie Pyne; Natalie Rivlin; Ruben van Hooidonk; C. Drew Harvell

Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.


Philosophical Transactions of the Royal Society B | 2016

Improving marine disease surveillance through sea temperature monitoring, outlooks and projections

Jeffrey A. Maynard; Ruben van Hooidonk; C. Drew Harvell; C. Mark Eakin; Gang Liu; Bette L. Willis; Gareth J. Williams; Maya L. Groner; Andrew P. Dobson; Scott F. Heron; Robert P. Glenn; Kathleen Reardon; Jeffrey D. Shields

To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host–pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 12°C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 12°C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats.


Global Change Biology | 2015

Downscaled projections of Caribbean coral bleaching that can inform conservation planning

Ruben van Hooidonk; Jeffrey A. Maynard; Yanyun Liu; Sang-Ki Lee

Abstract Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase‐5 models and via dynamical and statistical downscaling. A high‐resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4‐km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040–2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations.


PLOS ONE | 2016

Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

Linwood Pendleton; Adrien Comte; Chris Langdon; Julia A. Ekstrom; Sarah R. Cooley; Lisa Suatoni; Michael W. Beck; Luke Brander; Lauretta Burke; Josh E. Cinner; Carolyn Doherty; Peter Edwards; Dwight K. Gledhill; Li Qing Jiang; Ruben van Hooidonk; Louise Teh; George G. Waldbusser; Jessica Ritter

Reefs and People at Risk Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people’s lives and livelihoods, but such action must be informed by data and science. An Indicator Approach Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world.


Nature Climate Change | 2018

Climate change threatens the world’s marine protected areas

John F. Bruno; Amanda E. Bates; Chris Cacciapaglia; Elizabeth P. Pike; Steven C. Amstrup; Ruben van Hooidonk; Stephanie A. Henson; Richard B. Aronson

Marine protected areas (MPAs) are a primary management tool for mitigating threats to marine biodiversity1,2. MPAs and the species they protect, however, are increasingly being impacted by climate change. Here we show that, despite local protections, the warming associated with continued business-as-usual emissions (RCP8.5)3 will likely result in further habitat and species losses throughout low-latitude and tropical MPAs4,5. With continued business-as-usual emissions, mean sea-surface temperatures within MPAs are projected to increase 0.035 °C per year and warm an additional 2.8 °C by 2100. Under these conditions, the time of emergence (the year when sea-surface temperature and oxygen concentration exceed natural variability) is mid-century in 42% of 309 no-take marine reserves. Moreover, projected warming rates and the existing ‘community thermal safety margin’ (the inherent buffer against warming based on the thermal sensitivity of constituent species) both vary among ecoregions and with latitude. The community thermal safety margin will be exceeded by 2050 in the tropics and by 2150 for many higher latitude MPAs. Importantly, the spatial distribution of emergence is stressor-specific. Hence, rearranging MPAs to minimize exposure to one stressor could well increase exposure to another. Continued business-as-usual emissions will likely disrupt many marine ecosystems, reducing the benefits of MPAs.Marine protected areas aim to conserve biodiversity and habitat. However continued high emissions causing changes in sea-surface temperatures and oxygen levels are likely to disrupt many ecosystems protected by MPAs.


Nature Climate Change | 2018

Publisher Correction: Climate change threatens the world’s marine protected areas

John F. Bruno; Amanda E. Bates; Chris Cacciapaglia; Elizabeth P. Pike; Steven C. Amstrup; Ruben van Hooidonk; Stephanie A. Henson; Richard B. Aronson

In the version of this Letter originally published, the x axes titles of Fig. 3 erroneously read ‘Latitude’; they should have read ‘Longitude’. This has been corrected in the online versions of the Letter.


Nature Climate Change | 2015

Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence

Jeffrey A. Maynard; Ruben van Hooidonk; C. Mark Eakin; Marjetta L Puotinen; Melissa Garren; Gareth J. Williams; Scott F. Heron; Joleah B. Lamb; Ernesto Weil; Bette L. Willis; C. Drew Harvell

Collaboration


Dive into the Ruben van Hooidonk's collaboration.

Top Co-Authors

Avatar

Scott F. Heron

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

C. Mark Eakin

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Marshall

Great Barrier Reef Marine Park Authority

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven C. McKagan

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge