Ruby Banerjee
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruby Banerjee.
Cell | 2009
Jin Nakatani; Kota Tamada; Fumiyuki Hatanaka; Satoko Ise; Hisashi Ohta; Kiyoshi Inoue; Shozo Tomonaga; Yasuhito Watanabe; Yeun Jun Chung; Ruby Banerjee; Kazuya Iwamoto; Tadafumi Kato; Makoto Okazawa; Kenta Yamauchi; Koichi Tanda; Keizo Takao; Tsuyoshi Miyakawa; Allan Bradley; Toru Takumi
Summary Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca2+ responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.
Nature Methods | 2015
Iain C. Macaulay; Wilfried Haerty; Parveen Kumar; Yang I. Li; Tim Xiaoming Hu; Mabel J Teng; Mubeen Goolam; Nathalie Saurat; Paul Coupland; Lesley Shirley; Miriam Smith; Niels Van der Aa; Ruby Banerjee; Peter Ellis; Michael A. Quail; Harold Swerdlow; Magdalena Zernicka-Goetz; Frederick J. Livesey; Chris P. Ponting; Thierry Voet
The simultaneous sequencing of a single cells genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.
Science | 2010
Roland Rad; Lena Rad; Wei Wang; Juan Cadiñanos; George S. Vassiliou; Stephen A. Rice; Lia S. Campos; Kosuke Yusa; Ruby Banerjee; Meng Amy Li; Jorge de la Rosa; Alexander Strong; Dong Lu; Peter Ellis; Nathalie Conte; Fang Tang Yang; Pentao Liu; Allan Bradley
Piggybacking on Cancer Genes Transposons are mobile segments of DNA that can insert in or near important genes to cause mutations that disrupt gene function. Rad et al. (p. 1104, published online 14 October) adapted a mutagenic transposon called Piggybac, originally derived from a moth, into a tool for discovery of cancer-causing genes in mice. Mobilization of Piggybac in mice was associated with the development of leukemias and solid tumors. In many instances the causative mutations, which were identified by mapping the Piggybac integration sites, were within genes not previously implicated in cancer. Mutations induced by a transposable element in mice can be used to identify cancer-causing genes. Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.
Nature Genetics | 2011
George S. Vassiliou; Jonathan L. Cooper; Roland Rad; Juan Li; Stephen Rice; Anthony G. Uren; Lena Rad; Peter Ellis; Robert Andrews; Ruby Banerjee; C Grove; Wei Wang; Pentao Liu; Penny Wright; Mark J. Arends; Allan Bradley
Acute myeloid leukemia (AML) is a molecularly diverse malignancy with a poor prognosis whose largest subgroup is characterized by somatic mutations in NPM1, which encodes nucleophosmin. These mutations, termed NPM1c, result in cytoplasmic dislocation of nucleophosmin and are associated with distinctive transcriptional signatures, yet their role in leukemogenesis remains obscure. Here we report that activation of a humanized Npm1c knock-in allele in mouse hemopoietic stem cells causes Hox gene overexpression, enhanced self renewal and expanded myelopoiesis. One third of mice developed delayed-onset AML, suggesting a requirement for cooperating mutations. We identified such mutations using a Sleeping Beauty transposon, which caused rapid-onset AML in 80% of mice with Npm1c, associated with mutually exclusive integrations in Csf2, Flt3 or Rasgrp1 in 55 of 70 leukemias. We also identified recurrent integrations in known and newly discovered leukemia genes including Nf1, Bach2, Dleu2 and Nup98. Our results provide new pathogenetic insights and identify possible therapeutic targets in NPM1c+ AML.
Genes & Development | 2010
Tanja van Harn; Floris Foijer; Marcel A. T. M. van Vugt; Ruby Banerjee; Fentang Yang; Anneke B. Oostra; Hans Joenje; Hein te Riele
Loss of G1/S control is a hallmark of cancer, and is often caused by inactivation of the retinoblastoma pathway. However, mouse embryonic fibroblasts lacking the retinoblastoma genes RB1, p107, and p130 (TKO MEFs) are still subject to cell cycle control: Upon mitogen deprivation, they enter and complete S phase, but then firmly arrest in G2. We now show that G2-arrested TKO MEFs have accumulated DNA damage. Upon mitogen readdition, cells resume proliferation, although only part of the damage is repaired. As a result, mitotic cells show chromatid breaks and chromatid cohesion defects. These aberrations lead to aneuploidy in the descendent cell population. Thus, our results demonstrate that unfavorable growth conditions can cause genomic instability in cells lacking G1/S control. This mechanism may allow premalignant tumor cells to acquire additional genetic alterations that promote tumorigenesis.
Nature Genetics | 2016
G. David Poznik; Yali Xue; Fernando L. Mendez; Thomas Willems; Andrea Massaia; Melissa A. Wilson Sayres; Qasim Ayub; Shane McCarthy; Apurva Narechania; Seva Kashin; Yuan Chen; Ruby Banerjee; Juan L. Rodriguez-Flores; Maria Cerezo; Haojing Shao; Melissa Gymrek; Ankit Malhotra; Sandra Louzada; Rob DeSalle; Graham R. S. Ritchie; Eliza Cerveira; Tomas Fitzgerald; Erik Garrison; Anthony Marcketta; David Mittelman; Mallory Romanovitch; Chengsheng Zhang; Xiangqun Zheng-Bradley; Gonçalo R. Abecasis; Steven A. McCarroll
We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.
Nature Medicine | 2014
Nina Schönhuber; Barbara Seidler; Kathleen Schuck; Christian Veltkamp; Christina Schachtler; Magdalena Zukowska; Stefan Eser; Thorsten B. Feyerabend; Mariel C. Paul; Philipp Eser; Sabine Klein; Andrew M. Lowy; Ruby Banerjee; Fangtang Yang; Chang-Lung Lee; Everett J. Moding; David G. Kirsch; Angelika Scheideler; Dario R. Alessi; Ignacio Varela; Allan Bradley; Alexander Kind; Angelika Schnieke; Hans Reimer Rodewald; Roland Rad; Roland M. Schmid; Günter Schneider; Dieter Saur
Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP–based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell–autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.
Nature Genetics | 2005
David J. Adams; Emmanouil T. Dermitzakis; Tony Cox; James Smith; Robert Davies; Ruby Banerjee; James K. Bonfield; James C. Mullikin; Yeun Jun Chung; Jane Rogers; Allan Bradley
Inbred mouse strains provide the foundation for mouse genetics. By selecting for phenotypic features of interest, inbreeding drives genomic evolution and eliminates individual variation, while fixing certain sets of alleles that are responsible for the trait characteristics of the strain. Mouse strains 129Sv (129S5) and C57BL/6J, two of the most widely used inbred lines, diverged from common ancestors within the last century, yet very little is known about the genomic differences between them. By comparative genomic hybridization and sequence analysis of 129S5 short insert libraries, we identified substantial structural variation, a complex fine-scale haplotype pattern with a continuous distribution of diversity blocks, and extensive nucleotide variation, including nonsynonymous coding SNPs and stop codons. Collectively, these genomic changes denote the level and direction of allele fixation that has occurred during inbreeding and provide a basis for defining what makes these mouse strains unique.
PLOS ONE | 2013
Susan M. Gribble; Frances K. Wiseman; Stephen Clayton; Elena Prigmore; Elizabeth Langley; Fengtang Yang; Sean F. Maguire; Beiyuan Fu; Diana Rajan; Olivia Sheppard; Carol Scott; Heidi Hauser; Philip Stephens; Lucy Stebbings; Bee Ling Ng; Tomas Fitzgerald; Michael A. Quail; Ruby Banerjee; Kai Rothkamm; Victor L. J. Tybulewicz; Elizabeth M. C. Fisher; Nigel P. Carter
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.
Nature Communications | 2016
Roman Maresch; Sebastian Mueller; Christian Veltkamp; Rupert Öllinger; Mathias Friedrich; Irina Heid; Katja Steiger; Julia Weber; Thomas Engleitner; Maxim Barenboim; Sabine Klein; Sandra Louzada; Ruby Banerjee; Alexander Strong; Teresa Stauber; Nina Gross; Ulf Geumann; Sebastian Lange; Marc Ringelhan; Ignacio Varela; Kristian Unger; Fengtang Yang; Roland M. Schmid; George S. Vassiliou; Rickmer Braren; Günter Schneider; Mathias Heikenwalder; Allan Bradley; Dieter Saur; Roland Rad
Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research.