Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruby I. MacDonald is active.

Publication


Featured researches published by Ruby I. MacDonald.


Biochimica et Biophysica Acta | 1991

Small-volume extrusion apparatus for preparation of large, unilamellar vesicles

Robert C. MacDonald; Ruby I. MacDonald; Bert Ph. M. Menco; Keizo Takeshita; Nanda K. Subbarao; Lan-rong Hu

The design and performance of a filter holder which enables convenient preparation of volumes of up to a milliliter of large, unilamellar vesicles formed by extrusion (LUVETs) from multilamellar vesicles (MLVs) are described. The filter holder provides for back-and-forth passage of the sample between two syringes, a design that minimizes filter blockage, eliminates the need to change filters during LUVET preparation and reduces preparation time to a few minutes. Replicas of slam-frozen LUVETs in the electron microscope are unilamellar and reasonably homogeneous with an average diameter close to the pore size of the filters used to extrude them. Extrusion per se does not destabilize the vesicles, which trapped a fluorescent dye only when they were disrupted on freeze-thawing and during the first extrusion when most of the MLVs were apparently converted to LUVETs.


Cell | 1999

Structures of Two Repeats of Spectrin Suggest Models of Flexibility

Valerie L Grum; Dongning Li; Ruby I. MacDonald; Alfonso Mondragón

Spectrin is a vital component of the cytoskeleton, conferring flexibility on cells and providing a scaffold for a variety of proteins. It is composed of tandem, antiparallel coiled-coil repeats. We report four related crystal structures at 1.45 A, 2.0 A, 3.1 A, and 4.0 A resolution of two connected repeats of chicken brain alpha-spectrin. In all of the structures, the linker region between adjacent units is alpha-helical without breaks, kinks, or obvious boundaries. Two features observed in the structures are (1) conformational rearrangement in one repeat, resulting in movement of the position of a loop, and (2) varying degrees of bending at the linker region. These features form the basis of two different models of flexibility: a conformational rearrangement and a bending model. These models provide novel atomic details of spectrin flexibility.


Journal of Biological Chemistry | 1997

Site-directed Mutagenesis of Either the Highly Conserved Trp-22 or the Moderately Conserved Trp-95 to a Large, Hydrophobic Residue Reduces the Thermodynamic Stability of a Spectrin Repeating Unit

Dennis P. Pantazatos; Ruby I. MacDonald

As reported previously (MacDonald, R. I., Musacchio, A., Holmgren, R. A., and Saraste, M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 1299–1303), an unfolded peptide was obtained by site-directed mutagenesis of Trp-22 to Ala in the cloned, wild type 17th repeating unit (α17) of chicken brain α-spectrin. Trp occurs in position 22 of nearly all repeating units of spectrin. In the present study, Trp-22 was mutated to Phe or to Tyr to compare thermodynamic stabilities of urea-induced unfolding of α16 and mutants thereof. α16 was chosen for this study instead of α17, because α16 has two tryptophans, allowing urea-induced unfolding to be tracked by the fluorescence of the Trp remaining in each mutant peptide and by circular dichroism in the far UV. The free energies of unfolding of W22Y and W22F were 50% that of α16, showing that Trp-22 is crucial in stabilizing the triple helical bundle motif of the spectrin repeating unit. Mutation of the moderately conserved Trp-95 of α16 to Val, which occupies position 95 in α17, also yielded a peptide with 50% of the free energy of unfolding of α16. Thus, the thermodynamic stability of a given spectrin repeating unit may depend on both moderately and highly conserved tryptophans. Different structural roles of Trp-22 and Trp-95 in α16 are suggested by the slightly higher wavelength of maximum emission of Trp-22, the greater acrylamide quenching of Trp-95 than Trp-22, and the longer lifetime of Trp-95. For comparison with α16, urea-induced unfolding of spectrin dimer isolated from human red cells was monitored by far UV-CD and by tryptophan fluorescence. Thermodynamic parameters could not be rigorously derived for the stability of spectrin dimer because unfolding of spectrin dimer involved more than two states, unlike unfolding of cloned repeating units. However, the similar midpoints of CD-monitored denaturation curves of α16 and spectrin dimer,i.e. 2.7 and 3.2 m urea, respectively, indicate that investigation of cloned repeating units of spectrin can provide physiologically relevant information on these structures.


Biochemistry | 2008

Molecular Epitopes of the Ankyrin-Spectrin Interaction

Jonathan J. Ipsaro; Lei Huang; Lucy Gutierrez; Ruby I. MacDonald

Isoforms of ankyrin and its binding partner spectrin are responsible for a number of interactions in a variety of human cells. Conflicting evidence, however, had identified two different, non-overlapping human erythroid ankyrin subdomains, Zu5 and 272, as the minimum binding region for beta-spectrin. Complementary studies on the ankyrin-binding domain of spectrin have been somewhat more conclusive yet have not presented binding in terms of well-phased, integral numbers of spectrin repeats. Thus, the objective of this study was to clearly define and characterize the minimal ankyrin-spectrin binding epitopes. Circular dichroism (CD) wavelength spectra of the aforementioned ankyrin subdomains show that these fragments are 30-60% unstructured. In contrast, human erythroid beta-spectrin repeats 13, 14, 15, and 16 (prepared in all combinations of two adjacent repeats) demonstrated proper folding and stability as determined by CD and tryptophan wavelength and heat denaturation scans. Native polyacrylamide gel electrophoresis (PAGE) gel shifts as well as affinity pull-down assays implicated Zu5 and beta-spectrin repeats 14-15 as the minimum binding epitopes. These results were confirmed by analytical ultracentrifugation to sedimentation equilibrium by which a 1:1 complex was obtained if and only if Zu5 was mixed with beta-spectrin constructs containing repeats 14 and 15 in tandem. Surface plasmon resonance yielded a K D of 15.2 nM for binding of beta-spectrin fragments to the ankyrin subdomain Zu5, accounting for all of the binding observed between the intact molecules. Collectively, these results show the 14th and 15th beta-spectrin repeats comprise the minimal, phased region of beta-spectrin, which binds ankyrin at the Zu5 subdomain with high affinity.


Biochimica et Biophysica Acta | 1991

Characteristics of spectrin-induced leakage of extruded, phosphatidylserine vesicles

Nanda K. Subbarao; Ruby I. MacDonald; Keizo Takeshita; Robert C. MacDonald

At neutral pH spectrin induces modest leakage of trapped calcein from reverse-phase or extruded, but not sonicated, vesicles composed of phosphatidylserine, but not phosphatidylcholine. The extent of leakage from extruded vesicles is not or is only slightly affected by magnesium ions at a physiological concentration or calcium ions at a greater than physiological concentration, respectively. In addition to accounting for several previously discrepant observations on the lytic effects of spectrin, these findings indicate that some proteins like spectrin may destabilize vesicles with low curvature more readily than vesicles of high curvature, in contrast to certain amphiphilic peptides. 60% less leakage is induced from phosphatidylserine vesicles by heat-denatured than by native spectrin. In contrast, both trypsin- and subtilisin-treated spectrins, if sufficiently digested, induce several-fold more leakage than undigested spectrin. Since spectrin prepared either by 1 M Tris dissociation of Triton-extracted cytoskeletons or by low ionic strength extraction of ghosts released the same amounts of calcein from vesicles of various compositions, these effects are unlikely to reflect artifacts of spectrin preparation. Furthermore, spectrin is unlikely to promote leakage in vivo, since vesicles composed of phosphatidylserine, cholesterol and/or phosphatidylethanolamine, which constitute the lipid composition of the inner monolayer of the red cell membrane, did not leak on addition of spectrin, whereas vesicles composed of phosphatidylserine and phosphatidylcholine, did leak in the presence of spectrin.


Biochimica et Biophysica Acta | 1983

Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer.

Ruby I. MacDonald; Robert C. MacDonald

A new pair of fluorescence-energy-transferring probes, dansylphosphatidylethanolamine and dioctadecylindocarbocyanine, were incorporated separately into phospholipid vesicles to monitor intervesicle lipid mixing under various conditions. The transfer efficiencies of mixtures of sonicated vesicles labeled with 2 wt% donor dansylphosphatidylethanolamine (DnsPE) or with 1 wt% acceptor dioctadecylindocarbocyanine (DiI-C18) were negligible, but increased to about 25% after the vesicles had been frozen in a solid CO2/ethanol bath, thawed and diluted. The freeze-thaw-induced mixing of lipids between vesicles, signified by energy transfer, was dependent on lipid concentration and was promoted by 0.5-1.5 M KCl, 0.5 M potassium trichloroacetate and 5 mM sodium acetate (pH 4) and inhibited by 0.5 M LiCl, 0.5 M glycerol, 0.5 M sucrose, 0.15 M KCl and 0.15-1.5 M NaCl. These results support and complement previously reported measurements of the trapped volumes, turbidities and population size distributions of similarly treated liposomes. Comparison of the responses of paucilamellar vesicles with those of multilamellar vesicles suggests that lipid mixing during freeze-thawing can occur either during interaction of the outermost bilayers of vesicles or during interaction of all bilayers, possibly as a result of breakdown and reformation of bilayer structure.


Virology | 1984

Inhibition of Sendai virus-induced hemolysis by long chain fatty acids

Robert C. MacDonald; Vittorio Dalle Ore; Ruby I. MacDonald

A number of fatty acids were found to inhibit Sendai virus-induced hemolysis. cis-Unsaturated fatty acids such as oleate, as well as the methyl-branched isostearate, completely inhibited viral hemolysis at concentrations as low as 5-10 micrograms/ml, whereas the saturated, normal acids such as palmitate and stearate were comparably inhibitory only at 2-5 times those concentrations. trans-Unsaturated acids, as well as several other amphiphilic compounds, were either not or only weakly inhibitory. In contrast to their disparate effects on viral hemolysis, cis- and trans-unsaturated acids lysed erythrocytes in the same concentration range, which is several times higher than that at which the former compounds inhibited viral hemolysis. The mechanism of inhibition of viral hemolysis by isostearate involves the inactivation of viral hemolytic activity per se, since isostearate neither inhibited viral hemagglutination nor rendered erythrocytes significantly less susceptible to hemolysis. Furthermore, the concentration dependence of hemolysis inhibition by isostearate was biphasic, increasing sharply at the critical micelle concentration from a linear relationship below that concentration. Finally, an inhibitory concentration of isostearate was well below that at which amphiphiles dissolved membranes and did not dissolve Sendai virus, as shown by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was concluded that low concentrations of fatty acids--particularly cis-unsaturated or fluid-phase types--could block the fusion, as opposed to agglutination, step of viral hemolysis by perturbing hydrophobic regions of the Sendai virus membrane.


Biochimica et Biophysica Acta | 1980

Lipid phase states influence glycophorin reconstitution

Ruby I. MacDonald

Reconstitution of glycophorin into dimyristoyl phosphatidylcholine and sphingomyelin vesicles was sub-maximal below the phase transition temperatures of these lipids. Reconstitution of glycophorin into diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine liposomes was maximal within a range of temperatures below the phase transition temperatures of dimyristoyl phosphatidylcholine and sphingomyelin but above the phase transition temperatures of diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine. These findings indicate a greater tendency for reconstitution of glycophorin into fluid as opposed to solid lipid phases.


Biochimica et Biophysica Acta | 1986

Trifluoperazine inhibits Sendai virus-induced hemolysis.

Ruby I. MacDonald

Sendai virus-induced hemolysis, a manifestation of virus-red cell fusion, is inhibited by exposure of the virus to 50 microM and higher concentrations of trifluoperazine. Trifluoperazine does not disrupt the virus, since trifluoperazine-treated virus with no hemolytic activity sediments slightly faster than untreated virus on sucrose density gradients and contains viral proteins in proportions characteristic of untreated virus. Trifluoperazine affects the fusion protein to a greater extent than the hemagglutinin, since trifluoperazine-treated virus with no hemolytic activity is as active or nearly as active in agglutinating red cells. The partition coefficient of trifluoperazine between the virus membrane and buffer is lower at 4 degrees C than, but the same at 37 degrees C, as that between the red cell membrane and buffer. Nevertheless, virus-independent red cell lysis and inactivation of virus-mediated hemolysis occur when the red cell and viral membranes, respectively, contain similar concentrations of trifluoperazine. Furthermore, 13-28% more trifluoperazine is necessary to achieve either effect at 4 degrees C or at 25 degrees C than at 37 degrees C. Changes in the surface activity of trifluoperazine do not explain these results, insofar as the critical micellar concentration of (0.75 mM) and maximal reduction in surface tension by (40 dyn/cm) trifluoperazine are the same at 25 degrees C and 37 degrees C. The fluorescence of viral tryptophan decreases by approx. 25% when viral hemolysis is inactivated by trifluoperazine, by trypsin treatment or by heating at 100 degrees C for 5 min.


Archives of Biochemistry and Biophysics | 1988

Phosphatidylserine vesicle lysis by Sendai virus at low pH is not due to virus-vesicle fusion.

Ruby I. MacDonald

As a model of the fusion of Sendai virus with red cells, the interaction of the virus with phosphatidylserine (PS) vesicles at pH 5 was quantitated by the release of a trapped marker from target vesicles and by mixing of lipids of the virus and the vesicles. Release of the marker was measured as dequenching of calcein trapped at a self-quenched concentration and lipid mixing was measured as a decrease in energy transfer between fluorescent phospholipid analogs in the target membrane. At comparable virus:vesicle ratios both calcein release and lipid mixing were maximal at pH 5 and significantly reduced after trypsin, but not chymotrypsin, treatment. In contrast, these two effects differed in their PS dependence, time course, and temperature dependence, indicating that calcein release is not a consequence of the fusion of a permeable virus membrane with an impermeable target membrane. Vesicles composed of 25 to 100% PS released similar amounts of calcein, whereas fusion increased linearly as a function of PS content of the target vesicles. The half-time was 15 s for calcein release but 1.5 min for fusion. The temperature coefficient of fusion was at least three times greater than that of calcein release. These results indicate that calcein release at pH 5 may signify an interaction of the virus with PS target membranes which precedes but does not necessarily culminate in fusion, given too low a temperature or an inappropriate target membrane composition.

Collaboration


Dive into the Ruby I. MacDonald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongning Li

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge