Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruby Singh is active.

Publication


Featured researches published by Ruby Singh.


The FASEB Journal | 2015

Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress

Ayan Kumar Ghosh; Abul Hasan Sardar; Abhishek Mandal; Savita Saini; Kumar Abhishek; Ashish Kumar; Bidyut Purkait; Ruby Singh; Sushmita Das; Rupkatha Mukhopadhyay; Syamal Roy; Pradeep Das

Understanding the mechanism that allows the intracellular protozoan parasite Leishmania donovani (Ld) to respond to reactive oxygen species (ROS) is of increasing therapeutic importance because of the continuing resistance toward antileishmanial drugs and for determining the illusive survival strategy of these parasites. A shift in primary carbon metabolism is the fastest response to oxidative stress. A 14CO2 evolution study, expression of glucose transporters together with consumption assays, indicated a shift in metabolic flux of the parasites from glycolysis toward pentose phosphate pathway (PPP) when exposed to different oxidants in vitro/ex vivo. Changes in gene expression, protein levels, and enzyme activities all pointed to a metabolic reconfiguration of the central glucose metabolism in response to oxidants. Generation of glucose‐6‐phosphate dehydrogenase (G6PDH) (~5‐fold) and transaldolase (TAL) (~4.2‐fold) overexpressing Ld cells reaffirmed that lethal doses of ROS were counterbalanced by effective manipulation of NADPH:NADP+ ratio and stringent maintenance of reduced thiol content. The extent of protein carbonylation and accumulation of lipid peroxidized products were also found to be less in overexpressed cell lines. Interestingly, the LD50 of sodium antimony gluconate (SAG), amphotericin‐B (AmB), and miltefosine were significantly high toward overexpressing parasites. Consequently, this study illustrates that Ld strategizes a metabolic reconfiguration for replenishment of NADPH pool to encounter oxidative challenges.—Ghosh, A. K., Sardar, A. H., Mandal, A., Saini, S., Abhishek, K., Kumar, A., Purkait, B., Singh, R., Das, S., Mukhopadhyay, R., Roy, S., Das, P. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. FASEB J. 29, 2081‐2098 (2015). www.fasebj.org


PLOS Neglected Tropical Diseases | 2016

Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

Abhishek Mandal; Sushmita Das; Saptarshi Roy; Ayan Kumar Ghosh; Abul Hasan Sardar; Sudha Verma; Savita Saini; Ruby Singh; Kumar Abhishek; Ajay Kumar; Chitra Mandal; Pradeep Das

The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis.


Journal of Antimicrobial Chemotherapy | 2015

Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin B resistance in clinical isolates of Leishmania donovani

Bidyut Purkait; Ruby Singh; Kirti Wasnik; Sushmita Das; Ashish Kumar; Mark J. I. Paine; Manas Ranjan Dikhit; Dharmendra Singh; Abul Hasan Sardar; Ayan Kumar Ghosh; Pradeep Das

OBJECTIVEnSilent information regulator 2 (Sir2) is involved in parasite survival and apoptosis. Here, we aimed to explore the involvement of Sir2 in amphotericin B (AmB) resistance mechanism in Leishmania donovani.nnnMETHODSnThe expression levels of Sir2, MDR1 and NAD(+) biosynthetic pathway enzymes in AmB-resistant and -susceptible parasites were measured and total intracellular NAD(+)/NADH ratios were compared. Overexpression and knockout constructs of Sir2 were transfected in AmB-resistant and -susceptible parasites. Both resistant and susceptible parasites were inhibited with sirtinol for 4 h. The deacetylase activity of Sir2, the expression level of MDR1, the rate of AmB efflux, concentrations of reactive oxygen species (ROS) and levels of apoptosis were examined in WT, inhibited and transfected parasites, and the AmB susceptibility of the respective parasites was measured by determining the LD50 of AmB.nnnRESULTSnLevels of mRNA, protein and NAD(+)-dependent deacetylase activity of Sir2 were elevated in resistant versus susceptible parasites. Inhibition and/or deletion of Sir2 allele showed a decreased mRNA level of MDR1, lower drug efflux, increased ROS concentration, apoptosis-like phenomenon and decreased LD50 of AmB in resistant parasites. In contrast, Sir2 overexpression in susceptible parasites reversed drug susceptibility producing a resistant phenotype. This was associated with increased LD50 of AmB along with increased expression levels of MDR1, drug efflux and reduced concentrations of ROS, corresponding to decreased apoptosis of resistant to WT sensitive.nnnCONCLUSIONSnSir2 plays a critical role in AmB resistance by regulating MDR1, ROS concentration and apoptosis-like phenomena and may be a new resistance marker for visceral leishmaniasis.


Cell & Bioscience | 2016

Universal minicircle sequence binding protein of Leishmania donovani regulates pathogenicity by controlling expression of cytochrome-b

Ruby Singh; Bidyut Purkait; Kumar Abhishek; Savita Saini; Sushmita Das; Sudha Verma; Abhishek Mandal; Ayan Kr. Ghosh; Yousuf Ansari; Ashish Kumar; Abul Hasan Sardar; Ajay Kumar; Pradeep Parrack; Pradeep Das

AbstractBackgroundLeishmania contains a concatenatedn mitochondrial DNA, kDNA. Universal minicircle sequence binding protein (UMSBP), a mitochondrial protein, initiates kDNA replication by binding with a conserved universal minicircle sequence (UMS) of kDNA. Here, we describe first time in L. donovani the regulation of DNA binding activity of UMSBP and the role of UMSBP in virulence.MethodsInsilco and EMSA study were performed to show UMS-binding activity of UMSBP. Tryparedoxin(TXN)-tryparedoxin peroxidase(TXNPx) assay as well as co-overexpression of cytochrome-b5 reductase-like protein (CBRL) and tryparedoxin in L. donovani were done to know the regulation of DNA binding activity of UMSBP. Knockout and episomal-expression constructs of UMSBP were transfected in L. donovani. The cell viability assay and immunofluorescence study to know the status of kDNA were performed. Macrophages were infected with transfected parasites. mRNA level of cytochrome b, activity of complex-III, intracellular ATP level of both transfected promastigotes and amastigotes as well as ROS concentration and the level of apoptosis of transfected promastigotes were measured. Level of oxidative phosphorylation of both transfected and un-transfected amastigotes were compared. Burden of transfected amastigotes in both macrophages and BALB/c mice were measured.ResultsL. donovani UMSBP is capable of binding with UMS, regulated by redox through mitochondrial enzymes, TXN, TXNPx and CBRL. Depletion of UMSBP (LdU−/−) caused kDNA loss, which decreased cytochrome-b expression [component of complex-III of electron transport chain (ETC)] and leads to the disruption of complex-III activity, decreased ATP generation, increased ROS level and promastigotes exhibited apoptosis like death. Interestingly, single knockout of UMSBP (LdU−/+) has no effect on promastigotes survival. However, single knockout in intracellular amastigotes demonstrate loss of mRNA level of cytochrome-b, disruption in the activity of complex-III and reduced production of ATP in amastigotes than wild type. This process interfere with the oxidative-phosphorylation and thereby completely inhibit the intracellular proliferation of LdU−/+ amastigotes in human macrophages and in BALB/c mice. Amastigotes proliferation was restored as wild type after episomal expression of LdUMSBP in LdU−/+ parasites (LdU−/+AB).ConclusionThe LdUMSBP regulates leishmanial mitochondrial respiration and pathogenesis. So, LdUMSBP may be an attractive target for rational drug designing and LdU−/+ parasites could be considered as a live attenuated vaccine candidate against visceral leishmaniasis.


Molecular and Cellular Biology | 2017

Phosphorylation of translation initiation factor 2 alpha in Leishmania donovani under stress is necessary for parasite survival

Kumar Abhishek; Abul Hasan Sardar; Sushmita Das; Ashish Kumar; Ayan Kumar Ghosh; Ruby Singh; Savita Saini; Abhishek Mandal; Sudha Verma; Ajay Kumar; Bidyut Purkait; Manas Ranjan Dikhit; Pradeep Das

ABSTRACT The transformation of Leishmania donovani from a promastigote to an amastigote during mammalian host infection displays the immense adaptability of the parasite to survival under stress. Induction of translation initiation factor 2-alpha (eIF2α) phosphorylation by stress-specific eIF2α kinases is the basic stress-perceiving signal in eukaryotes to counter stress. Here, we demonstrate that elevated temperature and acidic pH induce the phosphorylation of Leishmania donovani eIF2α (LdeIF2α). In vitro inhibition experiments suggest that interference of LdeIF2α phosphorylation under conditions of elevated temperature and acidic pH debilitates parasite differentiation and reduces parasite viability (P < 0.05). Furthermore, inhibition of LdeIF2α phosphorylation significantly reduced the infection rate (P < 0.05), emphasizing its deciding role in successful invasion and infection establishment. Notably, our findings suggested the phosphorylation of LdeIF2α under H2O2-induced oxidative stress. Inhibition of H2O2-induced LdeIF2α phosphorylation hampered antioxidant balance by impaired redox homeostasis gene expression, resulting in increased reactive oxygen species accumulation (P < 0.05) and finally leading to decreased parasite viability (P < 0.05). Interestingly, exposure to sodium antimony glucamate and amphotericin B induces LdeIF2α phosphorylation, indicating its possible contribution to protection against antileishmanial drugs in common use. Overall, the results strongly suggest that stress-induced LdeIF2α phosphorylation is a necessary event for the parasite life cycle under stressed conditions for survival.


Frontiers in Immunology | 2017

l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

Abhishek Mandal; Sushmita Das; Ajay Kumar; Saptarshi Roy; Sudha Verma; Ayan Kumar Ghosh; Ruby Singh; Kumar Abhishek; Savita Saini; Abul Hasan Sardar; Bidyut Purkait; Ashish Kumar; Chitra Mandal; Pradeep Das

The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and prophylactic strategy to treat VL.


PLOS Neglected Tropical Diseases | 2016

Genetic Manipulation of Leishmania donovani to Explore the Involvement of Argininosuccinate Synthase in Oxidative Stress Management

Abul Hasan Sardar; Armando Jardim; Ayan Kumar Ghosh; Abhishek Mandal; Sushmita Das; Savita Saini; Kumar Abhishek; Ruby Singh; Sudha Verma; Ajay Kumar; Pradeep Das

Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.


Drug Design Development and Therapy | 2016

Activity of a novel sulfonamide compound 2-nitro- N -(pyridin-2-ylmethyl)benzenesulfonamide against Leishmania donovani

Manas Ranjan Dikhit; Bidyut Purkait; Ruby Singh; Bikash Ranjan Sahoo; Ashish Kumar; Rajiv Kumar Kar; Yousuf Ansari; Savita Saini; Kumar Abhishek; Ganesh Chandra Sahoo; Sushmita Das; Pradeep Das

New treatments for visceral leishmaniasis, caused by Leishmania donovani, are needed to overcome sustained toxicity, cost, and drug resistance. The aim of this study was to evaluate the therapeutic effects of 2-nitro-N-(pyridin-2-ylmethyl)benzenesulfonamide (2NB) against promastigote and amastigote forms of L. donovani and examine its effect in combination with amphotericin B (AmB) against AmB-resistant clinical isolates. Effects were assessed against extracellular promastigotes in vitro and intracellular amastigotes in L. donovani-infected macrophages. Levels of inducible nitric oxide and Th1 and Th2 cytokines were measured in infected 2NB-treated macrophages, and levels of reactive oxygen species and NO were measured in 2NB-treated macrophages. 2NB was active against promastigotes and intracellular amastigotes with 50% inhibitory concentration values of 38.5±1.5 µg/mL and 86.4±2.4 µg/mL, respectively. 2NB was not toxic to macrophages. Parasite titer was reduced by >85% in infected versus uninfected macrophages at a 2NB concentration of 120 µg/mL. The parasiticidal activity was associated with increased levels of Th1 cytokines, NO, and reactive oxygen species. Finally, 2NB increased the efficacy of AmB against AmB-resistant L. donovani. These results demonstrate 2NB to be an antileishmanial agent, opening up a new avenue for the development of alternative chemotherapies against visceral leishmaniasis.


Free Radical Biology and Medicine | 2017

Glucose-6-phosphate dehydrogenase and Trypanothione reductase interaction protects Leishmania donovani from metalloid mediated oxidative stress

Ayan Kumar Ghosh; Savita Saini; Sushmita Das; Abhishek Mandal; Abul Hasan Sardar; Md. Yousuf Ansari; Kumar Abhishek; Ajay Kumar; Ruby Singh; Sudha Verma; Asif Equbal; Vahab Ali; Pradeep Das

Abstract Exploration of metabolons as viable drug target is rare in kinetoplastid biology. Here we present a novel protein‐protein interaction among Glucose‐6‐phosphate dehydrogenase (LdG6PDH) and Trypanothione reductase (LdTryR) of Leishmania donovani displaying interconnection between central glucose metabolism and thiol metabolism of this parasite. Digitonin fractionation patterns observed through immunoblotting indicated localisation of both LdG6PDH and LdTryR in cytosol. In‐silico and in‐vitro interaction observed by size exclusion chromatography, co‐purification, pull‐down assay and spectrofluorimetric analysis revealed LdG6PDH and LdTryR physically interact with each other in a NADPH dependent manner. Coupled enzymatic assay displayed that NADPH generation was severely impaired by addition of SbIII, AsIII and TeIV extraneously, which hint towards metalloid driven structural changes of the interacting proteins. Co‐purification patterns and pull‐down assays also depicted that metalloids (SbIII, AsIII and TeIV) hinder the in‐vitro interaction of these two enzymes. Surprisingly, metalloids at sub‐lethal concentrations induced the in‐vivo interaction of LdG6PDH and LdTryR, as analyzed by pull‐down assays and fluorescence microscopy signifying protection against metalloid mediated ROS. Inhibition of LdTryR by thioridazine in LdG6PDH‐/‐ parasites resulted in metalloid induced apoptotic death of the parasites due to abrupt fall in reduced thiol content, disrupted NADPH/NADP+ homeostasis and lethal oxidative stress. Interestingly, clinical isolates of L.donovani resistant to SAG exhibited enhanced interaction between LdG6PDH and LdTryR and showed cross resistivity towards AsIII and TeIV. Thus, our findings propose the metabolon of LdG6PDH and LdTryR as an alternate therapeutic target and provide mechanistic insight about metalloid resistance in Visceral Leishmaniasis. Graphical abstract Figure. No Caption available. HighlightsMetabolon analysis of Leishmania is rare.G6PDH and TryR of L.donovani interact physically.Sb, As and Te affects this interaction in vitro and in vivo.Inhibition of LdTryR in G6PDH‐/‐ parasites leads to metalloid induced apoptosis.Interaction of LdG6PDH and LdTryR modulates LdMRPA, affecting metalloid resistance.


Parasites & Vectors | 2017

Role of inhibitors of serine peptidases in protecting Leishmania donovani against the hydrolytic peptidases of sand fly midgut

Sudha Verma; Sushmita Das; Abhishek Mandal; Yousuf Ansari; Sujata Kumari; Rani Mansuri; Ajay Kumar; Ruby Singh; Savita Saini; Kumar Abhishek; Vijay Kumar; Ganesh Chandra Sahoo; Pradeep Das

BackgroundIn vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment.MethodsIn silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays.ResultsWe identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to uninfected. Interestingly, during the early transition stage, substantial killing was observed in ISP2 knocked down (ISP2KD) parasites compared to wild type (WT), whereas ISP1 knocked down (ISP1KD) parasites remained viable. Therefore, our study clearly indicates that LdISP2 is a more effective inhibitor of serine peptidases than LdISP1.ConclusionOur results suggest that the lack of ISP2 is detrimental to the parasites during the early transition from amastigotes to promastigotes. Moreover, the results of the present study demonstrated for the first time that LdISP2 has an important role in the inhibition of peptidases and promoting L. donovani survival inside the Phlebotomus argentipes midgut.

Collaboration


Dive into the Ruby Singh's collaboration.

Top Co-Authors

Avatar

Pradeep Das

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sushmita Das

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kumar Abhishek

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Savita Saini

University of Health Sciences Antigua

View shared research outputs
Top Co-Authors

Avatar

Abhishek Mandal

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Abul Hasan Sardar

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ajay Kumar

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ayan Kumar Ghosh

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sudha Verma

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bidyut Purkait

Rajendra Memorial Research Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge