Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruchi M. Newman is active.

Publication


Featured researches published by Ruchi M. Newman.


PLOS Pathogens | 2012

Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection

Matthew R. Henn; Christian L. Boutwell; Patrick Charlebois; Niall J. Lennon; Karen A. Power; Alexander R. Macalalad; Aaron M. Berlin; Christine M. Malboeuf; Elizabeth Ryan; Sante Gnerre; Michael C. Zody; Rachel L. Erlich; Lisa Green; Andrew Berical; Yaoyu Wang; Monica Casali; Hendrik Streeck; Allyson K. Bloom; Tim Dudek; Damien C. Tully; Ruchi M. Newman; Karen L. Axten; Adrianne D. Gladden; Laura Battis; Michael Kemper; Qiandong Zeng; Terrance Shea; Sharvari Gujja; Carmen Zedlack; Olivier Gasser

Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.


PLOS Biology | 2010

TRIM5 Suppresses Cross-Species Transmission of a Primate Immunodeficiency Virus and Selects for Emergence of Resistant Variants in the New Species

Andrea Kirmaier; Fan Wu; Ruchi M. Newman; Laura R. Hall; Jennifer S. Morgan; Shelby L. O'Connor; Preston A. Marx; Mareike Meythaler; Simoy Goldstein; Alicia Buckler-White; Amitinder Kaur; Vanessa M. Hirsch; Welkin E. Johnson

Cross-species transmission of simian immunodeficiency virus from sooty mangabeys (SIVsm) into rhesus macaques, and subsequent emergence of pathogenic SIVmac, required adaptation to overcome restriction encoded by the macaque TRIM5 gene.


PLOS Pathogens | 2008

Evolution of a TRIM5-CypA splice isoform in old world monkeys

Ruchi M. Newman; Laura R. Hall; Andrea Kirmaier; Lu-Ann Pozzi; Erez Pery; Michael Farzan; Shawn P. O'Neil; Welkin E. Johnson

The TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction factor TRIM5α has a C-terminal B30.2/SPRY domain, which is the major determinant of viral target specificity. Here, we describe the evolution of a cyclophilin-A encoding exon downstream of the TRIM5 locus of Asian macaques. Alternative splicing gives rise to chimeric transcripts encoding the TRIM motif fused to a C-terminal CypA domain (TRIM5-CypA). We detected TRIM5-CypA chimeric transcripts in primary lymphocytes from two macaque species. These were derived in part from a CypA pseudogene in the TRIM5 locus, which is distinct from the previously described CypA insertion in TRIM5 of owl monkeys. The CypA insertion is linked to a mutation in the 3′ splice site upstream of exon 7, which may prevent or reduce expression of the α-isoform. All pig-tailed macaques (M. nemestrina) screened were homozygous for the CypA insertion. In contrast, the CypA-containing allele was present in 17% (17/101) of rhesus macaques (M. mulatta). The block to HIV-1 infection in lymphocytes from animals bearing the TRIM5-CypA allele was weaker than that in cells from wild type animals. HIV-1 infectivity remained significantly lower than SIV infectivity, but was not rescued by treatment with cyclosporine A. Thus, unlike owl monkey TRIMCyp, expression of the macaque TRIM5-CypA isoform does not result in increased restriction of HIV-1. Despite its distinct evolutionary origin, Macaca TRIM5-CypA has a similar domain arrangement and shares ∼80% amino-acid identity with the TRIMCyp protein of owl monkeys. The independent appearance of TRIM5-CypA chimeras in two primate lineages constitutes a remarkable example of convergent evolution. Based on the presence of the CypA insertion in separate macaque lineages, and its absence from sooty mangabeys, we estimate that the Macaca TRIM5-CypA variant appeared 5–10 million years ago in a common ancestor of the Asian macaques. Whether the formation of novel genes through alternative splicing has played a wider role in the evolution of the TRIM family remains to be investigated.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5α

Ruchi M. Newman; Laura R. Hall; Guo-Lin Chen; Shuji Sato; Eloisa Yuste; William E. Diehl; Eric Hunter; Amitinder Kaur; Gregory M. Miller; Welkin E. Johnson

Retroviral restriction factor TRIM5α exhibits a high degree of sequence variation among primate species. It has been proposed that this diversity is the cumulative result of ancient, lineage-specific episodes of positive selection. Here, we describe the contribution of within-species variation to the evolution of TRIM5α. Sampling within two geographically distinct Old World monkey species revealed extensive polymorphism, including individual polymorphisms that predate speciation (shared polymorphism). In some instances, alleles were more closely related to orthologues of other species than to one another. Both silent and nonsynonymous changes clustered in two domains. Functional assays revealed consequences of polymorphism, including differential restriction of a small panel of retroviruses by very similar alleles. Together, these features indicate that the primate TRIM5α locus has evolved under balancing selection. Except for the MHC there are few, if any, examples of long-term balancing selection in primates. Our results suggest a complex evolutionary scenario, in which fixation of lineage-specific adaptations is superimposed on a subset of critical polymorphisms that predate speciation events and have been maintained by balancing selection for millions of years.


PLOS Computational Biology | 2012

Highly Sensitive and Specific Detection of Rare Variants in Mixed Viral Populations from Massively Parallel Sequence Data

Alexander R. Macalalad; Michael C. Zody; Patrick Charlebois; Niall J. Lennon; Ruchi M. Newman; Christine M. Malboeuf; Elizabeth Ryan; Christian L. Boutwell; Karen A. Power; Doug E. Brackney; Kendra N. Pesko; Joshua Z. Levin; Gregory D. Ebel; Todd M. Allen; Bruce W. Birren; Matthew R. Henn

Viruses diversify over time within hosts, often undercutting the effectiveness of host defenses and therapeutic interventions. To design successful vaccines and therapeutics, it is critical to better understand viral diversification, including comprehensively characterizing the genetic variants in viral intra-host populations and modeling changes from transmission through the course of infection. Massively parallel sequencing technologies can overcome the cost constraints of older sequencing methods and obtain the high sequence coverage needed to detect rare genetic variants (<1%) within an infected host, and to assay variants without prior knowledge. Critical to interpreting deep sequence data sets is the ability to distinguish biological variants from process errors with high sensitivity and specificity. To address this challenge, we describe V-Phaser, an algorithm able to recognize rare biological variants in mixed populations. V-Phaser uses covariation (i.e. phasing) between observed variants to increase sensitivity and an expectation maximization algorithm that iteratively recalibrates base quality scores to increase specificity. Overall, V-Phaser achieved >97% sensitivity and >97% specificity on control read sets. On data derived from a patient after four years of HIV-1 infection, V-Phaser detected 2,015 variants across the ∼10 kb genome, including 603 rare variants (<1% frequency) detected only using phase information. V-Phaser identified variants at frequencies down to 0.2%, comparable to the detection threshold of allele-specific PCR, a method that requires prior knowledge of the variants. The high sensitivity and specificity of V-Phaser enables identifying and tracking changes in low frequency variants in mixed populations such as RNA viruses.


Journal of Virology | 2008

Rhesus Macaque TRIM5 Alleles Have Divergent Antiretroviral Specificities

Sam J. Wilson; Benjamin L. J. Webb; Charlotte Maplanka; Ruchi M. Newman; Ernst J. Verschoor; Jonathan L. Heeney; Greg J. Towers

ABSTRACT TRIM5α is a potent barrier to cross-species retroviral transmission, and TRIM5αs from different species have divergent antiretroviral specificities. Multiple TRIM5 alleles circulate within rhesus macaque populations. Here we show that they too have different antiretroviral specificities, highlighting how TRIM5 genotypes contribute to protection in an individual or a population.


Journal of Virology | 2015

Genome Sequencing and Analysis of Geographically Diverse Clinical Isolates of Herpes Simplex Virus 2

Ruchi M. Newman; Susanna L. Lamers; Brian Weiner; Stuart C. Ray; Robert C. Colgrove; Fernando Diaz; Lichen Jing; Kening Wang; Sakina Saif; Matthew R. Henn; Oliver Laeyendecker; Aaron A. R. Tobian; Jeffrey I. Cohen; David M. Koelle; Thomas C. Quinn; David M. Knipe

ABSTRACT Herpes simplex virus 2 (HSV-2), the principal causative agent of recurrent genital herpes, is a highly prevalent viral infection worldwide. Limited information is available on the amount of genomic DNA variation between HSV-2 strains because only two genomes have been determined, the HG52 laboratory strain and the newly sequenced SD90e low-passage-number clinical isolate strain, each from a different geographical area. In this study, we report the nearly complete genome sequences of 34 HSV-2 low-passage-number and laboratory strains, 14 of which were collected in Uganda, 1 in South Africa, 11 in the United States, and 8 in Japan. Our analyses of these genomes demonstrated remarkable sequence conservation, regardless of geographic origin, with the maximum nucleotide divergence between strains being 0.4% across the genome. In contrast, prior studies indicated that HSV-1 genomes exhibit more sequence diversity, as well as geographical clustering. Additionally, unlike HSV-1, little viral recombination between HSV-2 strains could be substantiated. These results are interpreted in light of HSV-2 evolution, epidemiology, and pathogenesis. Finally, the newly generated sequences more closely resemble the low-passage-number SD90e than HG52, supporting the use of the former as the new reference genome of HSV-2. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a causative agent of genital and neonatal herpes. Therefore, knowledge of its DNA genome and genetic variability is central to preventing and treating genital herpes. However, only two full-length HSV-2 genomes have been reported. In this study, we sequenced 34 additional HSV-2 low-passage-number and laboratory viral genomes and initiated analysis of the genetic diversity of HSV-2 strains from around the world. The analysis of these genomes will facilitate research aimed at vaccine development, diagnosis, and the evaluation of clinical manifestations and transmission of HSV-2. This information will also contribute to our understanding of HSV evolution.


The Journal of Infectious Diseases | 2013

Whole Genome Pyrosequencing of Rare Hepatitis C Virus Genotypes Enhances Subtype Classification and Identification of Naturally Occurring Drug Resistance Variants

Ruchi M. Newman; Thomas Kuntzen; Brian Weiner; Andrew Berical; Patrick Charlebois; Carla Kuiken; Donald G. Murphy; Peter Simmonds; Phil Bennett; Niall J. Lennon; Bruce W. Birren; Michael C. Zody; Todd M. Allen; Matthew R. Henn

BACKGROUND  Infection with hepatitis C virus (HCV) is a burgeoning worldwide public health problem, with 170 million infected individuals and an estimated 20 million deaths in the coming decades. While 6 main genotypes generally distinguish the global geographic diversity of HCV, a multitude of closely related subtypes within these genotypes are poorly defined and may influence clinical outcome and treatment options. Unfortunately, the paucity of genetic data from many of these subtypes makes time-consuming primer walking the limiting step for sequencing understudied subtypes. METHODS  Here we combined long-range polymerase chain reaction amplification with pyrosequencing for a rapid approach to generate the complete viral coding region of 31 samples representing poorly defined HCV subtypes. RESULTS  Phylogenetic classification based on full genome sequences validated previously identified HCV subtypes, identified a recombinant sequence, and identified a new distinct subtype of genotype 4. Unlike conventional sequencing methods, use of deep sequencing also facilitated characterization of minor drug resistance variants within these uncommon or, in some cases, previously uncharacterized HCV subtypes. CONCLUSIONS  These data aid in the classification of uncommon HCV subtypes while also providing a high-resolution view of viral diversity within infected patients, which may be relevant to the development of therapeutic regimens to minimize drug resistance.


Virology | 2011

Molecular evolution of West Nile virus in a northern temperate region: Connecticut, USA 1999-2008

Philip M. Armstrong; Charles R. Vossbrinck; Theodore G. Andreadis; John F. Anderson; Kendra N. Pesko; Ruchi M. Newman; Niall J. Lennon; Bruce Birren; Gregory D. Ebel; Mathew R. Henn

West Nile virus (WNV) has become firmly established in northeastern US, reemerging every summer since its introduction into North America in 1999. To determine whether WNV overwinters locally or is reseeded annually, we examined the patterns of viral lineage persistence and replacement in Connecticut over 10 consecutive transmission seasons by phylogenetic analysis. In addition, we compared the full protein coding sequence among WNV isolates to search for evidence of convergent and adaptive evolution. Viruses sampled from Connecticut segregated into a number of well-supported subclades by year of isolation with few clades persisting ≥2 years. Similar viral strains were dispersed in different locations across the state and divergent strains appeared within a single location during a single transmission season, implying widespread movement and rapid colonization of virus. Numerous amino acid substitutions arose in the population but only one change, V→A at position 159 of the envelope protein, became permanently fixed. Several instances of parallel evolution were identified in independent lineages, including one amino acid change in the NS4A protein that appears to be positively selected. Our results suggest that annual reemergence of WNV is driven by both reintroduction and local-overwintering of virus. Despite ongoing evolution of WNV, most amino acid variants occurred at low frequencies and were transient in the virus population.


Journal of Virology | 2014

Within-Host Whole-Genome Deep Sequencing and Diversity Analysis of Human Respiratory Syncytial Virus Infection Reveals Dynamics of Genomic Diversity in the Absence and Presence of Immune Pressure

Yonatan H. Grad; Ruchi M. Newman; Michael C. Zody; Xiao Yang; Ryan Murphy; James Qu; Christine M. Malboeuf; Joshua Z. Levin; Marc Lipsitch; John P. DeVincenzo

ABSTRACT Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in infants and young children and an important respiratory pathogen in the elderly and immunocompromised. While population-wide molecular epidemiology studies have shown multiple cocirculating RSV genotypes and revealed antigenic and genetic change over successive seasons, little is known about the extent of viral diversity over the course of an individual infection, the origins of novel variants, or the effect of immune pressure on viral diversity and potential immune-escape mutations. To investigate viral population diversity in the presence and absence of selective immune pressures, we studied whole-genome deep sequencing of RSV in upper airway samples from an infant with severe combined immune deficiency syndrome and persistent RSV infection. The infection continued over several months before and after bone marrow transplant (BMT) from his RSV-immune father. RSV diversity was characterized in 26 samples obtained over 78 days. Diversity increased after engraftment, as defined by T-cell presence, and populations reflected variation mostly within the G protein, the major surface antigen. Minority populations with known palivizumab resistance mutations emerged after its administration. The viral population appeared to diversify in response to selective pressures, showing a statistically significant growth in diversity in the presence of pressure from immunity. Defining escape mutations and their dynamics will be useful in the design and application of novel therapeutics and vaccines. These data can contribute to future studies of the relationship between within-host and population-wide RSV phylodynamics. IMPORTANCE Human RSV is an important cause of respiratory disease in infants, the elderly, and the immunocompromised. RSV circulating in a community appears to change season by season, but the amount of diversity generated during an individual infection and the impact of immunity on this viral diversity has been unclear. To address this question, we described within-host RSV diversity by whole-genome deep sequencing in a unique clinical case of an RSV-infected infant with severe combined immunodeficiency and effectively no adaptive immunity who then gained adaptive immunity after undergoing bone marrow transplantation. We found that viral diversity increased in the presence of adaptive immunity and was primarily within the G protein, the major surface antigen. These data will be useful in designing RSV treatments and vaccines and to help understand the relationship between the dynamics of viral diversification within individual hosts and the viral populations circulating in a community.

Collaboration


Dive into the Ruchi M. Newman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory D. Ebel

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge