Rudi D'Hooge
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rudi D'Hooge.
Cell | 2006
Sara Cipolat; Tomasz Rudka; Dieter Hartmann; Veronica Costa; Lutgarde Serneels; Katleen Craessaerts; Kristine Metzger; Christian Frezza; Wim Annaert; Luciano D'Adamio; Carmen Derks; Tim Dejaegere; Luca Pellegrini; Rudi D'Hooge; Luca Scorrano; Bart De Strooper
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.
The EMBO Journal | 2010
Inna Kuperstein; Kerensa Broersen; Iryna Benilova; Jef Rozenski; Wim Jonckheere; Maja Debulpaep; Annelies Vandersteen; Ine Segers-Nolten; Kees van der Werf; Vinod Subramaniam; Dries Braeken; Geert Callewaert; Carmen Bartic; Rudi D'Hooge; Ivo Martins; Frederic Rousseau; Joost Schymkowitz; Bart De Strooper
The amyloid peptides Aβ40 and Aβ42 of Alzheimers disease are thought to contribute differentially to the disease process. Although Aβ42 seems more pathogenic than Aβ40, the reason for this is not well understood. We show here that small alterations in the Aβ42:Aβ40 ratio dramatically affect the biophysical and biological properties of the Aβ mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aβ42:Aβ40 ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aβ species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aβ peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti‐amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non‐toxic intermediates.
The EMBO Journal | 2008
Ivo Cristiano Martins; Inna Kuperstein; Hannah Wilkinson; Elke Maes; Mieke Vanbrabant; Wim Jonckheere; Patrick Van Gelder; Dieter Hartmann; Rudi D'Hooge; Bart De Strooper; Joost Schymkowitz; Frederic Rousseau
Although soluble oligomeric and protofibrillar assemblies of Aβ‐amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimers disease (AD), the role of mature Aβ‐fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds ‘forward’ in a near‐irreversible manner from the monomeric Aβ peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Aβ amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Aβ but rather toward soluble amyloid protofibrils. We characterized these ‘backward’ Aβ protofibrils generated from mature Aβ fibers and compared them with previously identified ‘forward’ Aβ protofibrils obtained from the aggregation of fresh Aβ monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Aβ‐aggregates that could readily be activated by exposure to biological lipids.
American Journal of Human Genetics | 2008
Samuel F. Berkovic; Leanne M. Dibbens; Alicia Oshlack; Jeremy D. Silver; Marina Katerelos; Danya F. Vears; Renate Lüllmann-Rauch; Judith Blanz; Ke Wei Zhang; Jim Stankovich; Renate M. Kalnins; John P. Dowling; Eva Andermann; Frederick Andermann; Enrico Faldini; Rudi D'Hooge; Lata Vadlamudi; Richard A.L. Macdonell; Bree L. Hodgson; Marta A. Bayly; Judy Savige; John C. Mulley; Gordon K. Smyth; David Anthony Power; Paul Saftig; Melanie Bahlo
Action myoclonus-renal failure syndrome (AMRF) is an autosomal-recessive disorder with the remarkable combination of focal glomerulosclerosis, frequently with glomerular collapse, and progressive myoclonus epilepsy associated with storage material in the brain. Here, we employed a novel combination of molecular strategies to find the responsible gene and show its effects in an animal model. Utilizing only three unrelated affected individuals and their relatives, we used homozygosity mapping with single-nucleotide polymorphism chips to localize AMRF. We then used microarray-expression analysis to prioritize candidates prior to sequencing. The disorder was mapped to 4q13-21, and microarray-expression analysis identified SCARB2/Limp2, which encodes a lysosomal-membrane protein, as the likely candidate. Mutations in SCARB2/Limp2 were found in all three families used for mapping and subsequently confirmed in two other unrelated AMRF families. The mutations were associated with lack of SCARB2 protein. Reanalysis of an existing Limp2 knockout mouse showed intracellular inclusions in cerebral and cerebellar cortex, and the kidneys showed subtle glomerular changes. This study highlights that recessive genes can be identified with a very small number of subjects. The ancestral lysosomal-membrane protein SCARB2/LIMP-2 is responsible for AMRF. The heterogeneous pathology in the kidney and brain suggests that SCARB2/Limp2 has pleiotropic effects that may be relevant to understanding the pathogenesis of other forms of glomerulosclerosis or collapse and myoclonic epilepsies.
The Journal of Neuroscience | 2011
Astrid Sydow; Anneke Van der Jeugd; Fang Zheng; Tariq Ahmed; Detlef Balschun; Olga Petrova; Dagmar Drexler; Lepu Zhou; Gabriele M. Rune; Eckhard Mandelkow; Rudi D'Hooge; Christian Alzheimer; Eva-Maria Mandelkow
This report describes the behavioral and electrophysiological analysis of regulatable transgenic mice expressing mutant repeat domains of human Tau (TauRD). Mice were generated to express TauRD in two forms, differing in their propensity for β-structure and thus in their tendency for aggregation (“pro-aggregant” or “anti-aggregant”) (Mocanu et al., 2008). Only pro-aggregant mice show pronounced changes typical for Tau pathology in Alzheimers disease (aggregation, missorting, hyperphosphorylation, synaptic and neuronal loss), indicating that the β-propensity and hence the ability to aggregate is a key factor in the disease. We now tested the mice with regard to neuromotor parameters, behavior, learning and memory, and synaptic plasticity and correlated this with histological and biochemical parameters in different stages of switching TauRD on or off. The mice are normal in neuromotor tests. However, pro-aggregant TauRD mice are strongly impaired in memory and show pronounced loss of long-term potentiation (LTP), suggesting that Tau aggregation specifically perturbs these brain functions. Remarkably, when the expression of human pro-aggregant TauRD is switched on for ∼10 months and off for ∼4 months, memory and LTP recover, whereas aggregates decrease moderately and change their composition from mixed human plus mouse Tau to mouse Tau only. Neuronal loss persists, but synapses are partially rescued. This argues that continuous presence of amyloidogenic pro-aggregant TauRD constitutes the main toxic insult for memory and LTP, rather than the aggregates as such.
The Journal of Neuroscience | 2006
Diederik Moechars; Matthew C. Weston; Sandra Leo; Zsuzsanna Callaerts-Vegh; Ilse Goris; Guy Daneels; Arjan Buist; Miroslav Cik; P. van der Spek; Stefan U. Kass; Theo Meert; Rudi D'Hooge; Christian Rosenmund; R. Mark Hampson
Uptake of l-glutamate into synaptic vesicles is mediated by vesicular glutamate transporters (VGLUTs). Three transporters (VGLUT1–VGLUT3) are expressed in the mammalian CNS, with partial overlapping expression patterns, and VGLUT2 is the most abundantly expressed paralog in the thalamus, midbrain, and brainstem. Previous studies have shown that VGLUT1 is necessary for glutamatergic transmission in the hippocampus, but the role of VGLUT2 in excitatory transmission is unexplored in glutamatergic neurons and in vivo. We examined the electrophysiological and behavioral consequences of loss of either one or both alleles of VGLUT2. We show that targeted deletion of VGLUT2 in mice causes perinatal lethality and a 95% reduction in evoked glutamatergic responses in thalamic neurons, although hippocampal synapses function normally. Behavioral analysis of heterozygous VGLUT2 mice showed unchanged motor function, learning and memory, acute nociception, and inflammatory pain, but acquisition of neuropathic pain, maintenance of conditioned taste aversion, and defensive marble burying were all impaired. Reduction or loss of VGLUT2 in heterozygous and homozygous VGLUT2 knock-outs led to a graded reduction in the amplitude of the postsynaptic response to single-vesicle fusion in thalamic neurons, indicating that the vesicular VGLUT content is critically important for quantal size and demonstrating that VGLUT2-mediated reduction of excitatory drive affects specific forms of sensory processing.
The Journal of Neuroscience | 2008
Koen Poesen; Diether Lambrechts; Philip Van Damme; Joke Dhondt; Florian L. P. Bender; Nicolas Frank; Elke Bogaert; Bart Claes; Line Heylen; An Verheyen; Katrien Raes; Marc Tjwa; Ulf J. Eriksson; Masabumi Shibuya; Rony Nuydens; Ludo Van Den Bosch; Theo F. Meert; Rudi D'Hooge; Michael Sendtner; Wim Robberecht; Peter Carmeliet
Although vascular endothelial growth factor-B (VEGF-B) is a homolog of the angiogenic factor VEGF, it has only minimal angiogenic activity, raising the question of whether this factor has other (more relevant) biological properties. Intrigued by the possibility that VEGF family members affect neuronal cells, we explored whether VEGF-B might have a role in the nervous system. Here, we document that the 60 kDa VEGF-B isoform, VEGF-B186, is a neuroprotective factor. VEGF-B186 protected cultured primary motor neurons against degeneration. Mice lacking VEGF-B also developed a more severe form of motor neuron degeneration when intercrossed with mutant SOD1 mice. The in vitro and in vivo effects of VEGF-B186 were dependent on the tyrosine kinase activities of its receptor, Flt1, in motor neurons. When delivered intracerebroventricularly, VEGF-B186 prolonged the survival of mutant SOD1 rats. Compared with a similar dose of VEGF, VEGF-B186 was safer and did not cause vessel growth or blood–brain barrier leakiness. The neuroprotective activity of VEGF-B, in combination with its negligible angiogenic/permeability activity, offers attractive opportunities for the treatment of neurodegenerative diseases.
The EMBO Journal | 2010
Nataliya Glyvuk; Yaroslav Tsytsyura; Constanze Geumann; Rudi D'Hooge; Jana Hüve; Manuel Kratzke; Jennifer Baltes; Daniel Böning; Jürgen Klingauf; Peter Schu
Synaptic vesicle recycling involves AP‐2/clathrin‐mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue‐specific AP‐1–σ1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP‐1–σ1A complex mediates protein sorting between the trans‐Golgi network and early endosomes. Vertebrates express three σ1 subunit isoforms: A, B and C. The expressions of σ1A and σ1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from σ1B‐deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The σ1B‐deficient mice have reduced motor coordination and severely impaired long‐term spatial memory. These data reveal a molecular mechanism for a severe human X‐chromosome‐linked mental retardation.
Cerebral Cortex | 2010
Detlef Balschun; Diederik Moechars; Zsuzsanna Callaerts-Vegh; Ben Vermaercke; Nathalie Van Acker; Luc Andries; Rudi D'Hooge
Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) show largely complementary distribution in the mature rodent brain and tend to segregate to synapses with different physiological properties. In the hippocampus, VGLUT1 is the dominate subtype in adult animals, whereas VGLUT2 is transiently expressed during early postnatal development. We generated and characterized VGLUT1 knockout mice in order to examine the functional contribution of this transporter to hippocampal synaptic plasticity and hippocampus-dependent spatial learning. Because complete deletion of VGLUT1 resulted in postnatal lethality, we used heterozygous animals for analysis. Here, we report that deletion of VGLUT1 resulted in impaired hippocampal long-term potentiation (LTP) in the CA1 region in vitro. In contrast, heterozygous VGLUT2 mice that were investigated for comparison did not show any changes in LTP. The reduced ability of VGLUT1-deficient mice to express LTP was accompanied by a specific deficit in spatial reversal learning in the water maze. Our data suggest a functional role of VGLUT1 in forms of hippocampal synaptic plasticity that are required to adapt and modify acquired spatial maps to external stimuli and changes.
The Journal of Neuroscience | 2008
Ellen Denayer; Tariq Ahmed; Hilde Brems; Geeske M. van Woerden; Nils Zuiderveen Borgesius; Zsuzsanna Callaerts-Vegh; Akihiko Yoshimura; Dieter Hartmann; Ype Elgersma; Rudi D'Hooge; Eric Legius; Detlef Balschun
Germline mutations in SPRED1, a negative regulator of Ras, have been described in a neurofibromatosis type 1 (NF1)-like syndrome (NFLS) that included learning difficulties in some affected individuals. NFLS belongs to the group of phenotypically overlapping neuro-cardio-facial-cutaneous syndromes that are all caused by germ line mutations in genes of the Ras/mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) pathway and that present with some degree of learning difficulties or mental retardation. We investigated hippocampus-dependent learning and memory as well as synaptic plasticity in Spred1−/− mice, an animal model of this newly discovered human syndrome. Spred1−/− mice show decreased learning and memory performance in the Morris water maze and visual-discrimination T-maze, but normal basic neuromotor and sensory abilities. Electrophysiological recordings on brain slices from these animals identified defects in short- and long-term synaptic hippocampal plasticity, including a disequilibrium between long-term potentiation (LTP) and long-term depression in CA1 region. Biochemical analysis, 4 h after LTP induction, demonstrated increased ERK-phosphorylation in Spred1−/− slices compared with those of wild-type littermates. This indicates that deficits in hippocampus-dependent learning and synaptic plasticity induced by SPRED1 deficiency are related to hyperactivation of the Ras/ERK pathway.