Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rudi Prihandoko is active.

Publication


Featured researches published by Rudi Prihandoko.


Journal of Biological Chemistry | 2011

Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code.

Adrian J. Butcher; Rudi Prihandoko; Kok Choi Kong; Phillip McWilliams; Jennifer Edwards; Andrew R. Bottrill; Sharad C. Mistry; Andrew B. Tobin

G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a “bar code” that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical Gq/11-coupled M3-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M3-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M3-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.


Molecular Pharmacology | 2011

Developing Chemical Genetic Approaches to Explore G Protein-Coupled Receptor Function: Validation of the Use of a Receptor Activated Solely by Synthetic Ligand (RASSL)

Elisa Alvarez-Curto; Rudi Prihandoko; Christofer S. Tautermann; Jurriaan M. Zwier; John D. Pediani; Martin J. Lohse; Carsten Hoffmann; Andrew B. Tobin; Graeme Milligan

Molecular evolution and chemical genetics have been applied to generate functional pairings of mutated G protein-coupled receptors (GPCRs) and nonendogenous ligands. These mutant receptors, referred to as receptors activated solely by synthetic ligands (RASSLs) or designer receptors exclusively activated by designer drugs (DREADDs), have huge potential to define physiological roles of GPCRs and to validate receptors in animal models as therapeutic targets to treat human disease. However, appreciation of ligand bias and functional selectivity of different ligands at the same receptor suggests that RASSLs may signal differently than wild-type receptors activated by endogenous agonists. We assessed this by generating forms of wild-type human M3 muscarinic receptor and a RASSL variant that responds selectively to clozapine N-oxide. Although the RASSL receptor had reduced affinity for muscarinic antagonists, including atropine, stimulation with clozapine N-oxide produced effects very similar to those generated by acetylcholine at the wild-type M3-receptor. Such effects included the relative movement of the third intracellular loop and C-terminal tail of intramolecular fluorescence resonance energy transfer sensors and the ability of the wild type and evolved mutant to regulate extracellular signal-regulated kinase 1/2 phosphorylation. Each form interacted similarly with β-arrestin 2 and was internalized from the cell surface in response to the appropriate ligand. Furthermore, the pattern of phosphorylation of specific serine residues within the evolved receptor in response to clozapine N-oxide was very similar to that produced by acetylcholine at the wild type. Such results provide confidence that, at least for the M3 muscarinic receptor, results obtained after transgenic expression of this RASSL are likely to mirror the actions of acetylcholine at the wild type receptor.


Journal of Biological Chemistry | 2014

Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4

Adrian J. Butcher; Brian D. Hudson; Bharat Shimpukade; Elisa Alvarez-Curto; Rudi Prihandoko; Trond Ulven; Graeme Milligan; Andrew B. Tobin

Background: FFA4 is a receptor for long chain fatty acids and possible target for diabetes and inflammatory diseases. Results: Sites of phosphorylation and interaction with arrestin-3 were mapped within the C-terminal tail. Conclusion: Both phosphorylation and structural elements are required for interaction with arrestin-3. Significance: Insight gained into arrestin-3 versus G protein signaling and implications for biased ligand development may drive identification of improved therapeutics. In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr347, Thr349, Ser350, Ser357, and Ser360) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu341, Asp348, and Asp355 located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling.


Journal of Biological Chemistry | 2016

Targeted Elimination of G proteins and Arrestins Defines their Specific Contributions to both Intensity and Duration of G protein-Coupled Receptor Signalling

Elisa Alvarez-Curto; Asuka Inoue; Laura Jenkins; Sheikh Zahir Raihan; Rudi Prihandoko; Andrew B. Tobin; Graeme Milligan

G protein-coupled receptors (GPCRs) can initiate intracellular signaling cascades by coupling to an array of heterotrimeric G proteins and arrestin adaptor proteins. Understanding the contribution of each of these coupling options to GPCR signaling has been hampered by a paucity of tools to selectively perturb receptor function. Here we employ CRISPR/Cas9 genome editing to eliminate selected G proteins (Gαq and Gα11) or arrestin2 and arrestin3 from HEK293 cells together with the elimination of receptor phosphorylation sites to define the relative contribution of G proteins, arrestins, and receptor phosphorylation to the signaling outcomes of the free fatty acid receptor 4 (FFA4). A lack of FFA4-mediated elevation of intracellular Ca2+ in Gαq/Gα11-null cells and agonist-mediated receptor internalization in arrestin2/3-null cells confirmed previously reported canonical signaling features of this receptor, thereby validating the genome-edited HEK293 cells. FFA4-mediated ERK1/2 activation was totally dependent on Gq/11 but intriguingly was substantially enhanced for FFA4 receptors lacking sites of regulated phosphorylation. This was not due to a simple lack of desensitization of Gq/11 signaling because the Gq/11-dependent calcium response was desensitized by both receptor phosphorylation and arrestin-dependent mechanisms, whereas a substantially enhanced ERK1/2 response was only observed for receptors lacking phosphorylation sites and not in arrestin2/3-null cells. In conclusion, we validate CRISPR/Cas9 engineered HEK293 cells lacking Gq/11 or arrestin2/3 as systems for GPCR signaling research and employ these cells to reveal a previously unappreciated interplay of signaling pathways where receptor phosphorylation can impact on ERK1/2 signaling through a mechanism that is likely independent of arrestins.


Molecular Pharmacology | 2016

Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein–Coupled Receptor 120

Rudi Prihandoko; Elisa Alvarez-Curto; Brian D. Hudson; Adrian J. Butcher; Trond Ulven; Ashley M. Miller; Andrew B. Tobin; Graeme Milligan

It is established that long-chain free fatty acids including ω-3 fatty acids mediate an array of biologic responses through members of the free fatty acid (FFA) receptor family, which includes FFA4. However, the signaling mechanisms and modes of regulation of this receptor class remain unclear. Here, we employed mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C-terminal tail, designated cluster 1 (Thr347, Thr349, and Ser350) and cluster 2 (Ser357 and Ser361). Mutation of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11 proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment of arrestin 3, receptor internalization, and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signaling was extended further by selective mutations of the phosphoacceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phosphoacceptor sites within cluster 1 had no effect on receptor internalization and had a less extensive effect on arrestin 3 recruitment but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C terminus of the receptor.


Handbook of experimental pharmacology | 2012

Physiological role of G-protein coupled receptor phosphorylation.

Adrian J. Butcher; Kok Choi Kong; Rudi Prihandoko; Andrew B. Tobin

It is now well established that G-protein coupled receptors (GPCRs) are hyper-phosphorylated following agonist occupation usually at serine and threonine residues contained on the third intracellular loop and C-terminal tail. After some 2 decades of intensive research, the nature of protein kinases involved in this process together with the signalling consequences of receptor phosphorylation has been firmly established. The major challenge that the field currently faces is placing all this information within a physiological context and determining to what extent does phosphoregulation of GPCRs impact on whole animal responses. In this chapter, we address this issue by describing how GPCR phosphorylation might vary depending on the cell type in which the receptor is expressed and how this might be employed to drive selective regulation of physiological responses.


Journal of Biological Chemistry | 2016

An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory.

Adrian J. Butcher; Sophie J. Bradley; Rudi Prihandoko; Simon M. Brooke; Adrian J. Mogg; Julie-Myrtille Bourgognon; Timothy Macedo-Hatch; Jennifer M. Edwards; Andrew R. Bottrill; R. A. John Challiss; Lisa M. Broad; Christian C. Felder; Andrew B. Tobin

Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo. Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser228) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser228. These data supported the hypothesis that phosphorylation at Ser228 was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser228 on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser228 phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser228 not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning.


Trends in Pharmacological Sciences | 2017

FFA4/GPR120: pharmacology and therapeutic opportunities

Graeme Milligan; Elisa Alvarez-Curto; Brian D. Hudson; Rudi Prihandoko; Andrew B. Tobin

Free Fatty Acid receptor 4 (FFA4), also known as GPR120, is a G-protein-coupled receptor (GPCR) responsive to long-chain fatty acids that is attracting considerable attention as a potential novel therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Although no clinical studies have yet been initiated to assess efficacy in this indication, a significant number of primary publications and patents have highlighted the ability of agonists with potency at FFA4 to improve glucose disposition and enhance insulin sensitivity in animal models. However, the distribution pattern of the receptor suggests that targeting FFA4 may also be useful in other conditions, ranging from cancer to lung function. Here, we discuss and contextualise the basis for these ideas and the results to support these conclusions.


American Journal of Physiology-cell Physiology | 2014

Challenges of assigning protein kinases to in vivo phosphorylation events. Focus on "Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256".

Rudi Prihandoko; Andrew B. Tobin

reversible phosphorylation plays an important role in regulating the functions of many cellular proteins. This posttranslational modification acts as a molecular switch to turn proteins on and off in an acute and transient manner ([4][1]). Although there have been major advances in recent years in


Neuropharmacology | 2017

The use of chemogenetic approaches to study the physiological roles of muscarinic acetylcholine receptors in the central nervous system

Sophie J. Bradley; Andrew B. Tobin; Rudi Prihandoko

ABSTRACT Chemical genetic has played an important role in linking specific G protein‐coupled receptor (GPCR) signalling to cellular processes involved in central nervous system (CNS) functions. Key to this approach has been the modification of receptor properties such that receptors no longer respond to endogenous ligands but rather can be activated selectively by synthetic ligands. Such modified receptors have been called Receptors Activated Solely by Synthetic Ligands (RASSLs) or Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Unlike knock‐out animal models which allow detection of phenotypic changes caused by loss of receptor functions, RASSL and DREADD receptors offer the possibility of rescuing “knock‐out” phenotypic deficits by administration of the synthetic ligands. Here we describe the use of these modified receptors in defining the physiological role of GPCRs and validation of receptors as drug targets. This article is part of the Special Issue entitled ‘Neuropharmacology on Muscarinic Receptors’. HighlightsChemical genetics provided a way of activating specific signalling pathways and receptor subtypes in vivo.Application to muscarinic receptors revealed brain regions and signalling pathways involved in processes such as cognition.Using the endogenous promoter, chemical genetics may reveal in vivo physiological roles of muscarinic receptors in CNS.

Collaboration


Dive into the Rudi Prihandoko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trond Ulven

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge