Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rüdiger Ettrich is active.

Publication


Featured researches published by Rüdiger Ettrich.


Angewandte Chemie | 2013

Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel.

Tana Koudelakova; Radka Chaloupková; Jan Brezovsky; Zbynek Prokop; Eva Sebestova; Martin Hesseler; Morteza Khabiri; Maryia Plevaka; Daryna Kulik; Ivana Kuta Smatanova; Pavlina Rezacova; Rüdiger Ettrich; Uwe T. Bornscheuer; Jiri Damborsky

Mutations targeting as few as four residues lining the access tunnel extended enzyme’s half-life in 40% dimethyl sulfoxide from minutes to weeks (4,000-fold) and increased its melting temperature by 19 Grades C. Protein crystallography and molecular dynamics revealed that the tunnel residue packing is a key determinant of protein stability and the active-site accessibility for co-solvent molecules (red dots). The broad applicability of this concept was verified by analyzing twenty six proteins with buried active sites from all six enzyme classes.


The Journal of Neuroscience | 2007

Contribution of the Putative Inner-Pore Region to the Gating of the Transient Receptor Potential Vanilloid Subtype 1 Channel (TRPV1)

Klara Susankova; Rüdiger Ettrich; Ladislav Vyklicky; Jan Teisinger; Viktorie Vlachova

The transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific nonselective cation channel that is gated in response to various noxious stimuli: pungent vanilloids, low pH, noxious heat, and depolarizing voltages. By its analogy to K+ channels, the S6 inner helix domain of TRPV1 (Y666-G683) is a prime candidate to form the most constricted region of the permeation pathway and might therefore encompass an as-yet-unmapped gate of the channel. Using alanine-scanning mutagenesis, we identified 16 of 17 residues, that when mutated affected the functionality of the TRPV1 channel with respect to at least one stimulus modality. T670A was the only substitution producing the wild-type channel phenotype, whereas Y666A and N676A were nonfunctional but present at the plasma membrane. The periodicity of the functional effects of mutations within the TRPV1 inner pore region is consistent with an α-helical structure in which T670 and A680 might play the roles of two bending “hinges.”


Nature Structural & Molecular Biology | 2009

Structure of the motor subunit of type I restriction-modification complex EcoR124I

Mikalai Lapkouski; Santosh Panjikar; Pavel Janscak; Ivana Kuta Smatanova; Jannette Carey; Rüdiger Ettrich; Eva Csefalvay

Type I restriction-modification enzymes act as conventional adenine methylases on hemimethylated DNAs, but unmethylated recognition targets induce them to translocate thousands of base pairs before cleaving distant sites nonspecifically. The first crystal structure of a type I motor subunit responsible for translocation and cleavage suggests how the pentameric translocating complex is assembled and provides a structural framework for translocation of duplex DNA by RecA-like ATPase motors.


Science Signaling | 2016

Cholesterol modulates Orai1 channel function

Isabella Derler; Isaac Jardin; Peter B. Stathopulos; Martin Muik; Marc Fahrner; Vasilina Zayats; Saurabh Kumar Pandey; Michael Poteser; Barbara Lackner; Marketa Absolonova; Rainer Schindl; Klaus Groschner; Rüdiger Ettrich; Mitsu Ikura; Christoph Romanin

Cholesterol suppresses the activity of a channel needed to refill intracellular calcium stores. Orai1 senses cholesterol Calcium in cells is stored in various compartments and released to initiate various cellular processes and signaling cascades. Orai proteins are the channel component of a complex that mediates the CRAC current, which mediates calcium influx into cells in response to the depletion of calcium from intracellular stores. Derler et al. found that cholesterol bound to Orai1, suppressing its activity and calcium influx. In mast cells, cholesterol depletion enhanced CRAC currents and degranulation, a process that releases inflammatory mediators such as histamine and requires increased intracellular calcium. Thus, cholesterol reduces the activity of Orai1 and calcium influx through this channel. STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca2+ release–activated Ca2+ (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca2+ entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cells expressing these cholesterol-binding–deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE.


BMC Biotechnology | 2011

Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10

Ondřej Kaplan; Karel Bezouška; Ondřej Plíhal; Rüdiger Ettrich; Natallia Kulik; Ondřej Vaněk; Daniel Kavan; Oldřich Benada; Anna Malandra; Ondřej Šveda; Alicja B. Veselá; Anna Rinágelová; Kristýna Slámová; Maria Cantarella; Jürgen Felsberg; Jarmila Dušková; Jan Dohnálek; Michael Kotik; Vladimír Křen; Ludmila Martínková

BackgroundNitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult.ResultsA nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzymes native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn356) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp298-Val313 peptide was shortened to Asp298-Arg310 in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution.ConclusionsThe nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.


BMC Structural Biology | 2007

Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies

Rüdiger Ettrich; Vladimír Kopecký; Kateřina Hofbauerová; Vladimír Baumruk; Petr Novák; Petr Pompach; Petr Man; Ondřej Plíhal; Michal Kutý; Natallia Kulik; Jan Sklenář; Helena Ryšlavá; Vladimír Křen; Karel Bezouška

BackgroundFungal β-N-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-N-acetylhexosaminidase. The fungal β-N-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from Aspergillus oryzae was purified and its sequence was determined.ResultsThe complete primary structure of the fungal β-N-acetylhexosaminidase from Aspergillus oryzae CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the N-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation.ConclusionWhereas the intracellular bacterial β-N-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-N-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected enzyme stability in acidic conditions. Dimerization and N-glycosylation are the enzymes strategy for catalytic subunit stabilization. The disulfide bridge that connects Cys448 with Cys483 stabilizes a hinge region in a flexible loop close to the active site, which is an exclusive feature of the fungal enzymes, neither present in bacterial nor mammalian structures. This loop may play the role of a substrate binding site lid, anchored by a disulphide bridge that prevents the substrate binding site from being influenced by the flexible motion of the loop.


Journal of Neurochemistry | 2004

Molecular modeling of human MT2 melatonin receptor: the role of Val204, Leu272 and Tyr298 in ligand binding.

Petr Mazna; Veronika Obsilova; Irena Jelinkova; Ales Balik; Karel Berka; Zofie Sovova; Rüdiger Ettrich; Petr Svoboda; Tomas Obsil; Jan Teisinger

A model of the helical part of the human MT2 melatonin (hMT2) receptor, a member of the G protein‐coupled receptors superfamily has been generated, based on the structure of bovine rhodopsin. Modeling has been combined with site‐directed mutagenesis to investigate the role of the specific amino acid residues within the transmembrane domains (TM) numbers V, VI and VII of hMT2 receptor in the interaction with 2‐iodomelatonin. Saturation binding assays with 2‐iodomelatonin demonstrated that the substitution V204A (TMV) resulted in total loss of binding while the mutation V205A had no effect. The replacement of F209 with alanine led to a significant decrease in the Bmax value of receptor binding while mutations V205A and F209A also within TM V did not significantly change binding properties of the hMT2 receptor. In the case of TM VI, the substitution G271T caused substantial decrease in 2‐iodomelatonin binding to the hMT2 receptor. The change L272A (TM VI) as well as mutation Y298A within TM VII completely abolished ligand binding to the receptor. These data suggest that several new amino acid residues within TM V, VI and VII are involved in ligand–MT2 receptor interaction.


Biological Chemistry | 2002

Study of chaperone-like activity of human haptoglobin: conformational changes under heat shock conditions and localization of interaction sites.

Rüdiger Ettrich; Brandt W; Kopecký; Baumruk; Kateřina Hofbauerová; Pavlícek Z

Abstract With respect to the mechanism of chaperonelike activity, we examined the behavior of haptoglobin under heat shock conditions. Secondary structure changes during heat treatment were followed by circular dichroism, Raman and infrared spectroscopy. A model of the haptoglobin tetramer, based on its sequence homology with serine proteases and the CCP modules, has been proposed. Sequence regions responsible for the chaperonelike activity were not fully identical with the region that takes part in formation of the hemoglobinhaptoglobin complex. We can postulate the presence of at least two different chaperonebinding sites on each haptoglobin heavy chain.


Biochemical Journal | 2011

The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1

Abdul Samad; Lucie Sura; Jan Benedikt; Rüdiger Ettrich; Babak Minofar; Jan Teisinger; Viktorie Vlachova

The ankyrin transient receptor potential channel TRPA1 is a non-selective cationic channel that is expressed by sensory neurons, where it can be activated by pungent chemicals, such as AITC (allyl isothiocyanate), cinnamon or allicin, by deep cooling (<18 °C) or highly depolarizing voltages (>+100 mV). From the cytoplasmic side, this channel can be regulated by negatively charged ligands such as phosphoinositides or inorganic polyphosphates, most likely through an interaction with as yet unidentified positively charged domain(s). In the present study, we mutated 27 basic residues along the C-terminal tail of TRPA1, trying to explore their role in AITC- and voltage-dependent gating. In the proximal part of the C-terminus, the function-affecting mutations were at Lys969, Arg975, Lys988 and Lys989. A second significant region was found in the predicted helix, centred around Lys1048 and Lys1052, in which single alanine mutations completely abolished AITC- and voltage-dependent activation. In the distal portion of the C-terminus, the charge neutralizations K1092A and R1099A reduced the AITC sensitivity, and, in the latter mutant, increased the voltage-induced steady-state responses. Taken together, our findings identify basic residues in the C-terminus that are strongly involved in TRPA1 voltage and chemical sensitivity, and some of them may represent possible interaction sites for negatively charged molecules that are generally considered to modulate TRPA1.


Journal of Molecular Modeling | 2011

Structural analysis of natural killer cell receptor protein 1 (NKR- P1) extracellular domains suggests a conserved long loop region involved in ligand specificity

Žofie Sovová; Vladimír Kopecký; Tomáš Pazderka; Kateřina Hofbauerová; Ondřej Vaněk; Karel Bezouška; Rüdiger Ettrich

Receptor proteins at the cell surface regulate the ability of natural killer cells to recognize and kill a variety of aberrant target cells. The structural features determining the function of natural killer receptor proteins 1 (NKR-P1s) are largely unknown. In the present work, refined homology models are generated for the C-type lectin-like extracellular domains of rat NKR-P1A and NKR-P1B, mouse NKR-P1A, NKR-P1C, NKR-P1F, and NKR-P1G, and human NKR-P1 receptors. Experimental data on secondary structure, tertiary interactions, and thermal transitions are acquired for four of the proteins using Raman and infrared spectroscopy. The experimental and modeling results are in agreement with respect to the overall structures of the NKR-P1 receptor domains, while suggesting functionally significant local differences among species and isoforms. Two sequence regions that are conserved in all analyzed NKR-P1 receptors do not correspond to conserved structural elements as might be expected, but are represented by loop regions, one of which is arranged differently in the constructed models. This region displays high flexibility but is anchored by conserved sequences, suggesting that its position relative to the rest of the domain might be variable. This loop may contribute to ligand-binding specificity via a coupled conformational transition.

Collaboration


Dive into the Rüdiger Ettrich's collaboration.

Top Co-Authors

Avatar

Vladimír Křen

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morteza Khabiri

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Karel Bezouška

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Teisinger

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Natallia Kulik

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vladimír Kopecký

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristýna Slámová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge