Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rüdiger Krahe is active.

Publication


Featured researches published by Rüdiger Krahe.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2005

Modeling signal and background components of electrosensory scenes

Ling Chen; Jonathan L. House; Rüdiger Krahe; Mark E. Nelson

Weakly electric fish are able to detect and localize prey based on microvolt-level perturbations in the fish’s self-generated electric field. In natural environments, weak prey-related signals are embedded in much stronger electrosensory background noise. To better characterize the signal and background components associated with natural electrolocation tasks, we recorded transdermal voltage modulations in restrained Apteronotus albifrons in response to moving spheres, tail bends, and large nonconducting boundaries. Spherical objects give rise to ipsilateral images with center-surround structure and contralateral images that are weak and diffuse. Tail bends and laterally placed nonconducting boundaries induce relatively strong ipsilateral and contralateral modulations of opposite polarity. We present a computational model of electric field generation and electrosensory image formation that is able to reproduce the key features of these empirically measured signal and background components in a unified framework. The model comprises an array of point sources and sinks distributed along the midline of the fish, which can conform to arbitrary body bends. The model is computationally fast and can be used to estimate the spatiotemporal pattern of activation across the entire electroreceptor array of the fish during natural behaviors.


Journal of Neurophysiology | 2008

Temporal processing across multiple topographic maps in the electrosensory system.

Rüdiger Krahe; Joseph Bastian; Maurice J. Chacron

Multiple topographic representations of sensory space are common in the nervous system and presumably allow organisms to separately process particular features of incoming sensory stimuli that vary widely in their attributes. We compared the response properties of sensory neurons within three maps of the body surface that are arranged strictly in parallel to two classes of stimuli that mimic prey and conspecifics, respectively. We used information-theoretic approaches and measures of phase locking to quantify neuronal responses. Our results show that frequency tuning in one of the three maps does not depend on stimulus class. This map acts as a low-pass filter under both conditions. A previously described stimulus-class-dependent switch in frequency tuning is shown to occur in the other two maps. Only a fraction of the information encoded by all neurons could be recovered through a linear decoder. Particularly striking were low-pass neurons the information of which in the high-frequency range could not be decoded linearly. We then explored whether intrinsic cellular mechanisms could partially account for the differences in frequency tuning across maps. Injection of a Ca2+ chelator had no effect in the map with low-pass characteristics. However, injection of the same Ca2+ chelator in the other two maps switched the tuning of neurons from band-pass/high-pass to low-pass. These results show that Ca2+-dependent processes play an important part in determining the functional roles of different sensory maps and thus shed light on the evolution of this important feature of the vertebrate brain.


Current Opinion in Neurobiology | 2014

Neural maps in the electrosensory system of weakly electric fish

Rüdiger Krahe; Leonard Maler

The active electrosense of weakly electric fish is evolutionarily and developmentally related to passive electrosensation and the lateral line system. It shows the most highly differentiated topographic maps of the receptor array of all these senses. It is organized into three maps in the hindbrain that are, in turn, composed of columns, each consisting of six pyramidal cell classes. The cells in each column have different spatiotemporal processing properties yielding a total of 18 topographic representations of the body surface. The differential filtering by the hindbrain maps is used by superimposed maps in the multi-layered midbrain electrosensory region to extract specific stimulus features related to communication and foraging. At levels beyond the midbrain, topographic mapping of the body surface appears to be lost.


Neuroscience | 2011

NEURAL HETEROGENEITIES INFLUENCE ENVELOPE AND TEMPORAL CODING AT THE SENSORY PERIPHERY

M. Savard; Rüdiger Krahe; Maurice J. Chacron

Peripheral sensory neurons respond to stimuli containing a wide range of spatio-temporal frequencies. We investigated electroreceptor neuron coding in the gymnotiform wave-type weakly electric fish Apteronotus leptorhynchus. Previous studies used low to mid temporal frequencies (<256 Hz) and showed that electroreceptor neuron responses to sensory stimuli could be almost exclusively accounted for by linear models, thereby implying a rate code. We instead used temporal frequencies up to 425 Hz, which is in the upper behaviorally relevant range for this species. We show that electroreceptors can: (A) respond up to the highest frequencies tested and (B) display strong nonlinearities in their responses to such stimuli. These nonlinearities were manifested by the fact that the responses to repeated presentations of the same stimulus were coherent at temporal frequencies outside of those contained in the stimulus waveform. Specifically, these consisted of low frequencies corresponding to the time varying contrast or envelope of the stimulus as well as higher harmonics of the frequencies contained in the stimulus. Heterogeneities in the afferent population influenced nonlinear coding as afferents with the lowest baseline firing rates tended to display the strongest nonlinear responses. To understand the link between afferent heterogeneity and nonlinear responsiveness, we used a phenomenological mathematical model of electrosensory afferents. Varying a single parameter in the model was sufficient to account for the variability seen in our experimental data and yielded a prediction: nonlinear responses to the envelope and at higher harmonics are both due to afferents with lower baseline firing rates displaying greater degrees of rectification in their responses. This prediction was verified experimentally as we found that the coherence between the half-wave rectified stimulus and the response resembled the coherence between the responses to repeated presentations of the stimulus in our dataset. This result shows that rectification cannot only give rise to responses to low frequency envelopes but also at frequencies that are higher than those contained in the stimulus. The latter result implies that information is contained in the fine temporal structure of electroreceptor afferent spike trains. Our results show that heterogeneities in peripheral neuronal populations can have dramatic consequences on the nature of the neural code.


The Journal of Neuroscience | 2013

Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.

Haleh Fotowat; Reid R. Harrison; Rüdiger Krahe

The neural computations underlying sensory-guided behaviors can best be understood in view of the sensory stimuli to be processed under natural conditions. This input is often actively shaped by the movements of the animal and its sensory receptors. Little is known about natural sensory scene statistics taking into account the concomitant movement of sensory receptors in freely moving animals. South American weakly electric fish use a self-generated quasi-sinusoidal electric field for electrolocation and electrocommunication. Thousands of cutaneous electroreceptors detect changes in the transdermal potential (TDP) as the fish interact with conspecifics and the environment. Despite substantial knowledge about the circuitry and physiology of the electrosensory system, the statistical properties of the electrosensory input evoked by natural swimming movements have never been measured directly. Using underwater wireless telemetry, we recorded the TDP of Apteronotus leptorhynchus as they swam freely by themselves and during interaction with a conspecific. Swimming movements caused low-frequency TDP amplitude modulations (AMs). Interacting with a conspecific caused additional AMs around the difference frequency of their electric fields, with the amplitude of the AMs (envelope) varying at low frequencies due to mutual movements. Both AMs and envelopes showed a power-law relationship with frequency, indicating spectral scale invariance. Combining a computational model of the electric field with video tracking of movements, we show that specific swimming patterns cause characteristic spatiotemporal sensory input correlations that contain information that may be used by the brain to guide behavior.


Journal of Physiology-paris | 2008

Ionic and neuromodulatory regulation of burst discharge controls frequency tuning

W. Hamish Mehaffey; Lee D. Ellis; Rüdiger Krahe; Robert J. Dunn; Maurice J. Chacron

Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the primary processing of behaviourally relevant sensory signals occurs in pyramidal neurons of the electrosensory lateral line lobe (ELL). These cells encode low frequency prey stimuli with bursts of spikes and high frequency communication signals with single spikes. We describe here how bursting in pyramidal neurons can be regulated by intrinsic conductances in a cell subtype specific fashion across the sensory maps found within the ELL, thereby regulating their frequency tuning. Further, the neuromodulatory regulation of such conductances within individual cells and the consequences to frequency tuning are highlighted. Such alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli under various behaviourally relevant circumstances.


Biology Letters | 2011

Electrical signalling of dominance in a wild population of electric fish

Vincent Fugère; Hernán Ortega; Rüdiger Krahe

Animals often use signals to communicate their dominance status and avoid the costs of combat. We investigated whether the frequency of the electric organ discharge (EOD) of the weakly electric fish, Sternarchorhynchus sp., signals the dominance status of individuals. We correlated EOD frequency with body size and found a strong positive relationship. We then performed a competition experiment in which we found that higher frequency individuals were dominant over lower frequency ones. Finally, we conducted an electrical playback experiment and found that subjects more readily approached and attacked the stimulus electrodes when they played low-frequency signals than high-frequency ones. We propose that EOD frequency communicates dominance status in this gymnotiform species.


Neuroscience | 2010

Neural heterogeneities and stimulus properties affect burst coding in vivo.

Oscar Avila-Akerberg; Rüdiger Krahe; Maurice J. Chacron

Many neurons tend to fire clusters of action potentials called bursts followed by quiescence in response to sensory input. While the mechanisms that underlie burst firing are generally well understood in vitro, the functional role of these bursts in generating behavioral responses to sensory input in vivo are less clear. Pyramidal cells within the electrosensory lateral line lobe (ELL) of weakly electric fish offer an attractive model system for studying the coding properties of burst firing, because the anatomy and physiology of the electrosensory circuitry are well understood, and the burst mechanism of ELL pyramidal cells has been thoroughly characterized in vitro. We investigated the coding properties of bursts generated by these cells in vivo in response to mimics of behaviorally relevant sensory input. We found that heterogeneities within the pyramidal cell population had quantitative but not qualitative effects on burst coding for the low frequency components of broadband time varying input. Moreover, spatially localized stimuli mimicking, for example, prey tended to elicit more bursts than spatially global stimuli mimicking conspecific-related stimuli. We also found small but significant correlations between burst attributes such as the number of spikes per burst or the interspike interval during the burst and stimulus attributes such as stimulus amplitude or slope. These correlations were much weaker in magnitude than those observed in vitro. More surprisingly, our results show that correlations between burst and stimulus attributes actually decreased in magnitude when we used low frequency stimuli that are expected to promote burst firing. We propose that this discrepancy is attributable to differences between ELL pyramidal cell burst firing under in vivo and in vitro conditions.


The Journal of Experimental Biology | 2013

The energetics of electric organ discharge generation in gymnotiform weakly electric fish

Vielka L. Salazar; Rüdiger Krahe; John E. Lewis

Summary Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.


The Journal of Experimental Biology | 2011

Energetic constraints on electric signalling in wave-type weakly electric fishes.

Erin E. Reardon; Alana Parisi; Rüdiger Krahe; Lauren J. Chapman

SUMMARY Gymnotiform weakly electric fishes generate electric organ discharges (EODs) and sense perturbations of the resulting electric field for purposes of orientation, prey detection and communication. Some species produce oscillatory (‘wave-type’) EODs at very high frequencies (up to 2 kHz) that have been proposed to be energetically expensive. If high-frequency EODs are expensive, then fish may modulate their EOD frequency and/or amplitude in response to low-oxygen (hypoxic) stress and/or compensate for costs of signalling through other adaptations that maximize oxygen uptake efficiency. To test for evidence of an energetic cost of signalling, we recorded EOD in conjunction with metabolic rates, critical oxygen tension and aquatic surface respiration (ASR90) thresholds in Apteronotus leptorhynchus, a species found in high-oxygen habitats, and Eigenmannia virescens, a species more typically found in low-oxygen waters. Eigenmannia virescens had a lower mean ASR90 threshold and critical oxygen tension compared with A. leptorhynchus, consistent with field distributions. Within each species, there was no evidence for a relationship between metabolic rate and either EOD frequency or amplitude under normoxia, suggesting that there is no significant direct metabolic cost associated with producing a higher frequency EOD. However, when exposed to progressive hypoxia, fish generally responded by reducing EOD amplitude, which may reduce energetic costs. The threshold at which fish reduced EOD amplitude tended to be lower in E. virescens, a pattern consistent with higher tolerance to hypoxic stress. The results of this study suggest that wave-type fish reduce their EOD amplitude to reduce direct energetic costs without reducing metabolic rate under hypoxia.

Collaboration


Dive into the Rüdiger Krahe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Ronacher

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric S. Fortune

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sophie Picq

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jan Benda

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge