Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rüdiger Röttgers is active.

Publication


Featured researches published by Rüdiger Röttgers.


Nature | 2012

Deep carbon export from a Southern Ocean iron-fertilized diatom bloom

Victor Smetacek; Christine Klaas; Volker Strass; Philipp Assmy; Marina Montresor; Boris Cisewski; Nicolas Savoye; Adrian Webb; Francesco d’Ovidio; Jesús M. Arrieta; Ulrich Bathmann; Richard G. J. Bellerby; Gry Mine Berg; Peter Croot; S. Gonzalez; Joachim Henjes; Gerhard J. Herndl; Linn Hoffmann; Harry Leach; Martin Losch; Matthew M. Mills; Craig Neill; Ilka Peeken; Rüdiger Röttgers; Oliver Sachs; Eberhard Sauter; Maike Schmidt; Jill Nicola Schwarz; Anja Terbrüggen; Dieter Wolf-Gladrow

Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

Philipp Assmy; Victor Smetacek; Marina Montresor; Christine Klaas; Joachim Henjes; Volker Strass; Jesús M. Arrieta; Ulrich Bathmann; Gry Mine Berg; Eike Breitbarth; Boris Cisewski; Lars Friedrichs; Nike Fuchs; Gerhard J. Herndl; Sandra Jansen; Sören Krägefsky; Mikel Latasa; Ilka Peeken; Rüdiger Röttgers; Renate Scharek; Susanne E. Schüller; Sebastian Steigenberger; Adrian Webb; Dieter Wolf-Gladrow

Significance Silica-shelled diatoms dominate marine phytoplankton blooms and play a key role in ocean ecology and the global carbon cycle. We show how differences in ecological traits of dominant Southern Ocean diatom species, observed during the in situ European Iron Fertilization Experiment (EIFEX), can influence ocean carbon and silicon cycles. We argue that the ecology of thick-shelled diatom species, selected for by heavy copepod grazing, sequesters silicon relative to other nutrients in the deep Southern Ocean and underlying sediments to the detriment of diatom growth elsewhere. This evolutionary arms race provides a framework to link ecology with biogeochemistry of the ocean. Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux.


Applied Optics | 2012

Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach

Rüdiger Röttgers; Steffen Gehnke

Determination of particulate absorption in natural waters is often made by measuring the transmittance of samples on glass-fiber filters with the so-called quantitative filter technique (QFT). The accuracy of this technique is limited due to variations in the optical properties of the sample/filter composite, and due to uncertainties in the path-length amplification induced by multiple scattering inside the filter. Some variations in the optical properties of the sample/filter composite can be compensated by additional measurements of the filters reflectance (transmittance-reflectance method [T-R] [S. Tassan and G. M. Ferrari, Limnol. Oceanogr. 40, 1358 (1995)]). We propose a different, rarely used approach, namely to measure the filters absorptance in the center of a large integrating sphere, to avoid problems with light losses due to scattering. A comparison with other QFTs includes a sensitivity study for different error sources and determination of path-length amplification factors for each measurement technique. Measurements with a point-source integrating-cavity absorption meter were therefore used to determine the true absorption. Filter to filter variability induced a much lower error in absorptance compared to a measured transmittance. This reduced error permits more accurate determination of the usually low absorption coefficient in the near IR spectral region. The error of the T-R method was lower than that of the transmittance measurement but slightly higher than that of an absorptance measurement. The mean path-length amplification was much higher for the absorptance measurement compared to the T-R method (4.50 versus 2.45) but was found to be largely independent of wavelength and optical density. With natural samples the path-length amplification was less variable for the absorptance measurement, reducing the overall error for absorption to less than ±14%, compared to ±25% for the T-R method.


Applied Optics | 2005

Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies

Rüdiger Röttgers; Wolfgang Schönfeld; Peter-Rüdiger Kipp; Roland Doerffer

A prototype point-source integrating cavity absorption meter (PSICAM) is presented and compared with spectrophotometric absorption measurements. Different light collector assemblies of the PSICAM were tested regarding their capability to determine the absorption of water constituents accurately over a wide range of concentrations and scattering properties. The PSICAM setup with a radiance-type sensor showed the best performance. It was compared with a photometric absorption determination using nonscattering dye solutions. The mean difference between both methods was less than 2.4% in the spectral range of 400-700 nm. The absorption determination with the PSICAM, when equipped with a radiance sensor as a light collector, was only little affected by scattering and temperature. We conclude that the PSICAM can be used to determine the absorption of natural seawater samples at ambient temperatures.


Journal of Applied Remote Sensing | 2008

Bio-optical properties of the marine cyanobacteria Trichodesmium spp.

Cécile Dupouy; Jacques Neveux; Guillaume Dirberg; Rüdiger Röttgers; Márcio Murilo Barboza Tenório; Sylvain Ouillon

Bio-optical spectral properties were determined on fresh suspensions of Trichodesmium spp. collected in a tropical lagoon and put in seawater tanks (total chlorophyll concentrations range between 0.1 and 3.8 mg m -3). The spectrum of the backscattering coefficient was a hyperbolic function with a slope of 1.2, often showing troughs at 440, 550 and 676 nm, due to absorption peaks of chlorophyll and phycoerythrin. The absorption spectrum computed with a specific beta correction for Trichodesmium, showed a blue to red ratio (B/R) equivalent to the one of a single colony (B/R=2), and also showed the double peak of mycosporine-like amino acids (MAAs, 330 and 360 nm). The CDOM absorption spectrum showed minor MAA peaks when cyanobacterial concentrations were above 1 mg Chl a m -3. The chlorophyll a-specific backscattering and absorption coefficients at 442 nm were respectively 0.0126 m 2 (mg.chl a) -1 and 0.027 m 2 (mg chl a) -1. Suspensions in tanks exhibited a high backscattering ratio at 660 nm (b˜ b=b bp/b p). The above-water reflectance spectrum clearly showed troughs at the wavelength of the pigment absorption peaks. Datasets of Trichodesmium normalized absorption, backscattering and reflectance spectra will allow its detection with future hyperspectral ocean colour sensors.


Optics Express | 2014

Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region

Rüdiger Röttgers; David McKee; Christian Utschig

The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).


Remote Sensing | 2015

Hyperspectral Differentiation of Phytoplankton Taxonomic Groups: A Comparison between Using Remote Sensing Reflectance and Absorption Spectra

Hongyan Xi; Martin Hieronymi; Rüdiger Röttgers; Hajo Krasemann; Zhongfeng Qiu

The emergence of hyperspectral optical satellite sensors for ocean observation provides potential for more detailed information from aquatic ecosystems. The German hyperspectral satellite mission EnMAP (enmap.org) currently in the production phase is supported by a project to explore the capability of using EnMAP data and other future hyperspectral data from space. One task is to identify phytoplankton taxonomic groups. To fulfill this objective, on the basis of laboratory-measured absorption coefficients of phytoplankton cultures (aph(λ)) and corresponding simulated remote sensing reflectance spectra (Rrs(λ)), we examined the performance of spectral fourth-derivative analysis and clustering techniques to differentiate six taxonomic groups. We compared different sources of input data, namely aph(λ), Rrs(λ), and the absorption of water compounds obtained from inversion of the Rrs(λ)) spectra using a quasi-analytical algorithm (QAA). Rrs(λ) was tested as it can be directly obtained from hyperspectral sensors. The last one was tested as expected influences of the spectral features of pure water absorption on Rrs(λ) could be avoided after subtracting it from the inverted total absorption. Results showed that derivative analysis of measured aph(λ) spectra performed best with only a few misclassified cultures. Based on Rrs(λ) spectra, the accuracy of this differentiation decreased but the performance was partly restored if wavelengths of strong water absorption were excluded and chlorophyll concentrations were higher than 1 mg∙m−3. When based on QAA-inverted absorption spectra, the differentiation was less precise due to loss of information at longer wavelengths. This analysis showed that, compared to inverted absorption spectra from restricted inversion models, hyperspectral Rrs(λ) is potentially suitable input data for the differentiation of phytoplankton taxonomic groups in prospective EnMAP applications, though still a challenge at low algal concentrations.


Journal of Atmospheric and Oceanic Technology | 2013

Evaluation and improvement of an iterative scattering correction scheme for in situ absorption and attenuation measurements

David McKee; Jacek Piskozub; Rüdiger Röttgers; Rick A. Reynolds

The performance of several scattering correction schemes for reflecting-tube absorption and beam attenuation measurements is evaluated with data collected in European shelf seas. Standard scattering correction procedures for absorption measurements perform poorly because of nonzero absorption in the near infrared and wavelength-dependent scattering phase functions. A previously described iterative correction procedure based on Monte Carlo simulations of the Western Environmental Technologies Laboratories (WET Labs) ac-9 and independent estimates of particle backscattering initially performs poorly, but is greatly improved when realistic losses at flow-tube walls are incorporated into the model. The updated Monte Carlo scattering correction provides excellent agreement with independent absorption and attenuation measurements made with a point-source integrating-cavity absorption meter (PSICAM) and a Laser In Situ Scattering and Transmissometer (LISST, Sequoia Scientific), respectively. Implications for historic datasets and requirements for application to future datasets are discussed.


Journal of Geophysical Research | 2014

Impact of measurement uncertainties on determination of chlorophyll‐specific absorption coefficient for marine phytoplankton

David McKee; Rüdiger Röttgers; Griet Neukermans; Violeta Sanjuan Calzado; Marina Ampolo-Rella; Claire Neil; Alex Cunningham

Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors.


Optics Express | 2016

Optical closure in marine waters from in situ inherent optical property measurements

Ina Lefering; Fethi Bengil; Rüdiger Röttgers; D.G. Bowers; Alex Nimmo-Smith; Jill Nicola Schwarz; David McKee

Optical closure using radiative transfer simulations can be used to determine the consistency of in situ measurements of inherent optical properties (IOPs) and radiometry. Three scattering corrections are applied to in situ absorption and attenuation profile data for a range of coastal and oceanic waters, but are found to have only very limited impact on subsequent closure attempts for these stations. Best-fit regressions on log-transformed measured and modelled downwards irradiance, Ed, and upwards radiance, Lu, profiles have median slopes between 0.92 - 1.24, revealing a tendency to underestimate Ed and Lu with depth. This is only partly explained by non-inclusion of fluorescence emission from CDOM and chlorophyll in the simulations. There are several stations where multiple volume scattering function related data processing steps perform poorly which suggests the potential existence of unresolved features in the modelling of the angular distribution of scattered photons. General optical closure therefore remains problematic, even though there are many cases in the data set where the match between measured and modelled radiometric data is within 25% RMS%E. These results are significant for applications that rely on optical closure e.g. assimilating ocean colour data into coupled physical-ecosystem models.

Collaboration


Dive into the Rüdiger Röttgers's collaboration.

Researchain Logo
Decentralizing Knowledge