Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rudolf Eichenlaub is active.

Publication


Featured researches published by Rudolf Eichenlaub.


Journal of Biotechnology | 2008

The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology

Andreas Schlüter; Thomas Bekel; Naryttza N. Diaz; Michael Dondrup; Rudolf Eichenlaub; Karl-Heinz Gartemann; Irene Krahn; Lutz Krause; Holger Krömeke; Olaf Kruse; Jan H. Mussgnug; Heiko Neuweger; Karsten Niehaus; Alfred Pühler; Kai J. Runte; Rafael Szczepanowski; Andreas Tauch; Alexandra Tilker; Prisca Viehöver; Alexander Goesmann

Composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was analysed by means of a metagenomic approach applying the ultrafast 454-pyrosequencing technology. Sequencing of isolated total community DNA on a Genome Sequencer FLX System resulted in 616,072 reads with an average read length of 230 bases accounting for 141,664,289 bases sequence information. Assignment of obtained single reads to COG (Clusters of Orthologous Groups of proteins) categories revealed a genetic profile characteristic for an anaerobic microbial consortium conducting fermentative metabolic pathways. Assembly of single reads resulted in the formation of 8752 contigs larger than 500 bases in size. Contigs longer than 10kb mainly encode house-keeping proteins, e.g. DNA polymerase, recombinase, DNA ligase, sigma factor RpoD and genes involved in sugar and amino acid metabolism. A significant portion of contigs was allocated to the genome sequence of the archaeal methanogen Methanoculleus marisnigri JR1. Mapping of single reads to the M. marisnigri JR1 genome revealed that approximately 64% of the reference genome including methanogenesis gene regions are deeply covered. These results suggest that species related to those of the genus Methanoculleus play a dominant role in methanogenesis in the analysed fermentation sample. Moreover, assignment of numerous contig sequences to clostridial genomes including gene regions for cellulolytic functions indicates that clostridia are important for hydrolysis of cellulosic plant biomass in the biogas fermenter under study. Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production.


Journal of Bacteriology | 2008

The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity

Karl-Heinz Gartemann; Birte Abt; Thomas Bekel; Annette Burger; Jutta Engemann; Monika Flügel; Lars Gaigalat; Alexander Goesmann; Ines Gräfen; Jörn Kalinowski; Olaf Kaup; Oliver Kirchner; Lutz Krause; Burkhard Linke; Alice C. McHardy; Folker Meyer; Sandra Pohle; Christian Rückert; Susanne Schneiker; Eva-Maria Zellermann; Alfred Pühler; Rudolf Eichenlaub; Olaf Kaiser; Daniela Bartels

Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.


Molecular Plant-microbe Interactions | 2000

The Endo-β-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis Is a Pathogenicity Determinant Required for Induction of Bacterial Wilt of Tomato

Holger Jahr; Jens Dreier; Dietmar Meletzus; Rainer Bahro; Rudolf Eichenlaub

The phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt and canker of tomato, harbors two plasmids, pCM1 (27.35 kb) and pCM2 (72 kb), encoding genes involved in virulence (D. Meletzus, A. Bermpohl, J. Dreier, and R. Eichenlaub, 1993, J. Bacteriol. 175:2131-2136; J. Dreier, D. Meletzus, and R. Eichenlaub, 1997, Mol. Plant-Microbe Interact. 10:195-206). The region of pCM1 carrying the endoglucanase gene celA was mapped by deletion analysis and complementation. RNA hybridization identified a 2.4-knt (kilonucleotide) transcript of the celA structural gene and the transcriptional initiation site was mapped. The celA gene encodes CelA, a protein of 78 kDa (746 amino acids) with similarity to endo-beta-1,4-glucanases of family A1 cellulases. CelA has a three-domain structure with a catalytic domain, a type IIa-like cellulose-binding domain, and a C-terminal domain. We present evidence that CelA plays a major role in pathogenicity, since wilt induction capability is obtained by endoglucanase expression in plasmid-free, nonvirulent strains and by complementation of the CelA- gene-replacement mutant CMM-H4 with the wild-type celA gene.


Molecular Plant-microbe Interactions | 1997

Characterization of the Plasmid Encoded Virulence Region pat-1 of Phytopathogenic Clavibacter michiganensis subsp. michiganensis

Jens Dreier; Dietmar Meletzus; Rudolf Eichenlaub

The tomato pathogen Clavibacter michiganensis subsp. michiganensis NCPPB382, causing bacterial wilt and canker, harbors two plasmids, pCM1 (27.5 kb) and pCM2 (72 kb), carrying genes involved in virulence. The region of plasmid pCM2 encoding the pathogenicity locus pat-1 was mapped by deletion analysis and complementation studies to a 1.5-kb Bg/II/SmaI DNA fragment. Introduction of the pat-1 region into endophytic, plasmid-free isolates of C. michiganensis subsp. michiganensis converted these bacteria into virulent pathogens. Based on the nucleotide sequence of the pat-1 region, an open reading frame (ORF1) can be predicted, coding for a protein of 280 amino acids and 29.7 kDa with homology to serine proteases. Introduction of a frame-shift mutation in ORF1 leads to a loss of the pathogenic phenotype. Northern (RNA) hybridizations identified an 1.5-knt transcript of the pat-1 structural gene. The site of transcription initiation was mapped by primer extension and a typical -10/-35 region was located with significant homology to the consensus Escherichia coli sigma 70 and Bacillus subtilis sigma 43 promoters. Downstream of the pat-1 structural gene, a peculiar repetitive sequence motif (pat-1rep) is located, consisting of 20 direct tandem repeats preceded by a run of 14 guanosine residues. DNA sequences homologous to pat-1rep were isolated and characterized from four virulent C. michiganensis subsp. michiganensis strains exhibiting a high extent of structural conservation. The deletion of this repetitive sequence reduced virulence significantly but did not lead to a complete loss of the virulence phenotype.


Plant Physiology | 2008

Tomato Transcriptional Changes in Response to Clavibacter michiganensis subsp. michiganensis Reveal a Role for Ethylene in Disease Development

Vasudevan Balaji; Maya Mayrose; Ofra Sherf; Jasmine Jacob-Hirsch; Rudolf Eichenlaub; Naim M. Iraki; Shulamit Manulis-Sasson; Gideon Rechavi; Isaac Barash; Guido Sessa

Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive actinomycete, causing bacterial wilt and canker disease in tomato (Solanum lycopersicum). Host responses to gram-positive bacteria and molecular mechanisms associated with the development of disease symptoms caused by Cmm in tomato are largely unexplored. To investigate plant responses activated during this compatible interaction, we used microarray analysis to monitor changes in host gene expression during disease development. This analysis was performed at 4 d postinoculation, when bacteria were actively multiplying and no wilt symptoms were yet visible; and at 8 d postinoculation, when bacterial growth approached saturation and typical wilt symptoms were observed. Of the 9,254 tomato genes represented on the array, 122 were differentially expressed in Cmm-infected plants, compared with mock-inoculated plants. Functional classification of Cmm-responsive genes revealed that Cmm activated typical basal defense responses in the host, including induction of defense-related genes, production and scavenging of free oxygen radicals, enhanced protein turnover, and hormone synthesis. Cmm infection also induced a subset of host genes involved in ethylene biosynthesis and response. After inoculation with Cmm, Never ripe (Nr) mutant plants, impaired in ethylene perception, and transgenic plants with reduced ethylene synthesis showed significant delay in the appearance of wilt symptoms, compared with wild-type plants. The retarded wilting in Nr plants was a specific effect of ethylene insensitivity, and was not due to altered expression of defense-related genes, reduced bacterial populations, or decreased ethylene synthesis. Taken together, our results indicate that host-derived ethylene plays an important role in regulation of the tomato susceptible response to Cmm.


European Journal of Plant Pathology | 2008

Characterization of a Clavibacter michiganensis subsp. michiganensis population in Israel

Frida Kleitman; Isaac Barash; Annette Burger; Naim M. Iraki; Yunis Falah; Guido Sessa; Dan M. Weinthal; Laura Chalupowicz; Karl-Heinz Gartemann; Rudolf Eichenlaub; Shulamit Manulis-Sasson

Clavibacter michiganensis subsp. michiganensis (Cmm) strains, collected during the last decade from different locations in Israel, were analyzed by macrorestriction pulsed-field gel electrophoresis (PFGE). Fifty-eight strains from Israel and 18 from other sources were differentiated into 11 haplotypes with either VspI or DraI restriction enzymes. The strains from Israel formed four distinct groups among which groups A (16 strains) and B (32 strains) constituted the major clusters. These two groups originated from the Besor region, which is the main area for growing tomatoes under cover. Rep-PCR, with either ERIC or BOX primers, confirmed results obtained by PFGE. PCR with primers based on three genes – ppaA, chpC and tomA – that spanned the pathogenicity island of the reference strain NCPPB382, produced the expected products with the tested pathogenic strains. Plasmid analysis of representative strains revealed different profiles of one or two plasmids. However all the strains, including five non-pathogenic ones, reacted positively in PCR with primers based on celA gene, which resides on the plasmid pCM1 of NCPPB382. Southern hybridization of total DNA with a 3.2-kb BglII-fragment of pCM1 containing the celA gene was positive when carried out with 31 strains, but the size of the reacting band was not always the same as that of pCM1, suggesting that the plasmids carrying celA may differ in size. Comparison between the colonization rates of strain Cmm42 (group A) and of Cmm32 (group B) did not show any significant differences. The high diversity of the Cmm strains, on the one hand, and the presence of two persistent groups in the Besor region, on the other hand, suggests that the primary inoculum originated each year from residual plants in the soil rather than from infested seeds, in spite of extensive control measures taken by the growers in this area.


Microbiological Research | 1995

Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene

Heike M. Walkenhorst; Susanne K. Hemschemeier; Rudolf Eichenlaub

The nucleotide sequence of a 6.8-kb chromosomal subfragment of plasmid pHW100 complementing an Escherichia coli modC (chlD) mutant has been determined. This DNA region encodes the genes of a high-affinity uptake system for molybdate arranged in an operon with the genes modABCD. Since the modA product has a signal peptide at the N-terminus it probably is the periplasmic binding-protein for molybdate. The products of modB (chlJ) and modC (chlD) have been described earlier as the inner membrane protein and the ATP-binding protein of the molybdate transport system, respectively. At present, there is no information on possible functions of the fourth gene of the operon, modD. Upstream of the mod operon, two other gene loci, termed modR and an open reading frame ORF6 could be identified. ModR shares homology with a molybdenum-pterin binding protein of Clostridium pasteurianum. ORF6 has extensive homology to ModC and other nucleotide-binding proteins of E. coli. Insertional inactivation of modR and ORF6 using a gentamicin resistance gene cartridge has no effect on molybdoenzyme activities, indicating that none of the two gene products is essential for molybdate uptake or molybdenum cofactor synthesis. However, by using a plasmid carrying a modA-lacZ gene fusion we observed that inactivation of modR releases repression of the mod operon independent of the molybdate concentration in the medium. This indicates that modR is a component of the mod operon regulation or the repressor itself.


Journal of Bacteriology | 2001

Isolation and characterization of IS1409, an insertion element of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1, and development of a system for transposon mutagenesis.

Karl-Heinz Gartemann; Rudolf Eichenlaub

A new insertion element of 1,449 bp with 25-bp perfect terminal repeats, designated IS1409, was identified in the chromosome of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1 NCIB12013. Upon insertion, IS1409 causes a target duplication of 8 bp. IS1409 carries only a single open reading frame of 435 codons encoding the transposase TnpA. Both TnpA and the overall organization of IS1409 are highly similar to those of some related insertion elements of the ISL3 group (J. Mahillon and M. Chandler, Microbiol. Mol. Biol. Rev. 62:725--774, 1998). IS1409 was also found in other 4-chlorobenzoate-degrading Arthrobacter strains and Micrococcus luteus. Based on IS1409, a series of transposons carrying resistance genes for chloramphenicol and gentamicin were constructed. These transposons were used to demonstrate transposition events in vivo and to mutagenize Arthrobacter sp. strains.


Molecular Plant-microbe Interactions | 2005

Identification of a Tomatinase in the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382

Olaf Kaup; Ines Gräfen; Eva-Maria Zellermann; Rudolf Eichenlaub; Karl-Heinz Gartemann

The insertion site of a transposon mutant of Clavibacter michiganensis subsp. michiganensis NCPPB382 was cloned and found to be located in the gene tomA encoding a member of the glycosyl hydrolase family 10. The intact gene was obtained from a cosmid library of C. michiganensis subsp. michiganensis. The deduced protein TomA (543 amino acids, 58 kDa) contains a predicted signal peptide and two domains, the N-terminal catalytic domain and a C-terminal fibronectin III-like domain. The closest well-characterized relatives of TomA were tomatinases from fungi involved in the detoxification of the tomato saponin alpha-tomatine which acts as a growth inhibitor. Growth inhibition of C. michiganensis subsp. michiganensis by alpha-tomatine was stronger in the tomA mutants than in the wild type. Tomatinase activity assayed by deglycosylation of alpha-tomatine to tomatidine was demonstrated in concentrated culture supernatants of C. michiganensis subsp. michiganensis. No activity was found with the tomA mutants. However, neither the transposon mutant nor a second mutant constructed by gene disruption was affected in virulence on the tomato cv. Moneymaker.


Phytopathology | 2010

Sequential expression of bacterial virulence and plant defense genes during infection of tomato with Clavibacter michiganensis subsp. michiganensis.

Laura Chalupowicz; M. Cohen-Kandli; Orit Dror; Rudolf Eichenlaub; Karl-Heinz Gartemann; Guido Sessa; Isaac Barash; Shulamit Manulis-Sasson

The molecular interactions between Clavibacter michiganensis subsp. michiganensis and tomato plant were studied by following the expression of bacterial virulence and host-defense genes during early stages of infection. The C. michiganensis subsp. michiganensis genes included the plasmid-borne cellulase (celA) and the serine protease (pat-1), and the serine proteases chpC and ppaA, residing on the chp/tomA pathogenicity island (PAI). Gene expression was measured following tomato inoculation with Cmm382 (wild type), Cmm100 (lacking the plasmids pCM1 and pCM2), and Cmm27 (lacking the PAI). Transcriptional analysis revealed that celA and pat-1 were significantly induced in Cmm382 at initial 12 to 72 h, whereas chpC and ppaA were highly expressed only 96 h after inoculation. Interdependence between the expression of chromosomal and of plasmid-located genes was revealed: expression of celA and pat-1 was substantially reduced in the absence of the chp/tomA PAI, whereas chpC and ppaA expressions were reduced in the absence of the virulence plasmids. Transcription of chromosomal genes involved in cell wall degradation (i.e., pelA1, celB, xysA, and xysB), was also induced at early stages of infection. Expression of the host-defense genes, chitinase class II and pathogenesis-related protein-5 isoform was induced in the absence of the PAI at early stages of infection, suggesting that PAI-located genes are involved in suppression of tomato basal defenses.

Collaboration


Dive into the Rudolf Eichenlaub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Dreier

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge