Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rudolf J. Schweyen is active.

Publication


Featured researches published by Rudolf J. Schweyen.


Cell Death & Differentiation | 2007

Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy

Karin Nowikovsky; Siegfried Reipert; Rodney J. Devenish; Rudolf J. Schweyen

Loss of the MDM38 gene product in yeast mitochondria results in a variety of phenotypic effects including reduced content of respiratory chain complexes, altered mitochondrial morphology and loss of mitochondrial K+/H+ exchange activity resulting in osmotic swelling. By use of doxycycline-regulated shut-off of MDM38 gene expression, we show here that loss of K+/H+ exchange activity and mitochondrial swelling are early events, associated with a reduction in membrane potential and fragmentation of the mitochondrial reticulum. Changes in the pattern of mitochondrially encoded proteins are likely to be secondary to the loss of K+/H+ exchange activity. The use of a novel fluorescent biosensor directed to the mitochondrial matrix revealed that the loss of K+/H+ exchange activity was immediately followed by morphological changes of mitochondria and vacuoles, the close association of these organelles and finally uptake of mitochondrial material by vacuoles. Nigericin, a K+/H+ ionophore, fully prevented these effects of Mdm38p depletion. We conclude that osmotic swelling of mitochondria triggers selective mitochondrial autophagy or mitophagy.


The EMBO Journal | 2003

Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria

Martin Kolisek; Gabor Zsurka; Jozef Šamaj; Julian Weghuber; Rudolf J. Schweyen; Monika Schweigel

Steady‐state concentrations of mitochondrial Mg2+ previously have been shown to vary with the expression of Mrs2p, a component of the inner mitochondrial membrane with two transmembrane domains. While its structural and functional similarity to the bacterial Mg2+ transport protein CorA suggested a role for Mrs2p in Mg2+ influx into the organelle, other functions in cation homeostasis could not be excluded. Making use of the fluorescent dye mag‐fura 2 to measure free Mg2+ concentrations continuously, we describe here a high capacity, rapid Mg2+ influx system in isolated yeast mitochondria, driven by the mitochondrial membrane potential Δψ and inhibited by cobalt(III)hexaammine. Overexpression of Mrs2p increases influx rates 5‐fold, while the deletion of the MRS2 gene abolishes this high capacity Mg2+ influx. Mg2+ efflux from isolated mitochondria, observed with low Δψ only, also requires the presence of Mrs2p. Cross‐linking experiments revealed the presence of Mrs2p‐containing complexes in the mitochondrial membrane, probably constituting Mrs2p homo‐ oligomers. Taken together, these findings characterize Mrs2p as the first molecularly identified metal ion channel protein in the inner mitochondrial membrane.


Journal of Biological Chemistry | 1999

The Bacterial Magnesium Transporter CorA Can Functionally Substitute for Its Putative Homologue Mrs2p in the Yeast Inner Mitochondrial Membrane

Duc Minh Bui; Juraj Gregan; Ernst Jarosch; Antonella Ragnini; Rudolf J. Schweyen

The yeast nuclear gene MRS2 encodes a protein of 54 kDa, the presence of which has been shown to be essential for the splicing of group II intron RNA in mitochondria and, independently, for the maintenance of a functional respiratory system. Here we show that the MRS2 gene product (Mrs2p) is an integral protein of the inner mitochondrial membrane. It appears to be inserted into this membrane by virtue of two neighboring membrane spanning domains in its carboxyl-terminal half. A large amino-terminal and a shorter carboxyl-terminal part are likely to be exposed to the matrix space. Structural features and a short sequence motif indicate that Mrs2p may be related to the bacterial CorA Mg2+transporter. In fact, overexpression of the CorA gene in yeast partially suppresses the pet − phenotype of an mrs2 disrupted yeast strain. Disruption of theMRS2 gene leads to a significant decrease in total magnesium content of mitochondria which is compensated for by the overexpression of the CorA gene. Mutants lacking or overproducing Mrs2p exhibit phenotypes consistent with the involvement of Mrs2p in mitochondrial Mg2+ homeostasis.


Journal of Biological Chemistry | 2003

A Specific Role of the Yeast Mitochondrial Carriers Mrs3/4p in Mitochondrial Iron Acquisition under Iron-limiting Conditions

Ulrich Mühlenhoff; Jochen A. Stadler; Nadine Richhardt; Andreas Seubert; Thomas Eickhorst; Rudolf J. Schweyen; Roland Lill; Gerlinde Wiesenberger

The yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the “iron regulon.” We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts). Radiolabeling of yeast cells with 55Fe revealed a clear correlation between MRS3/4 expression levels and the efficiency of these biosynthetic reactions indicating a role of the carriers in utilization and/or transport of iron in vivo. Similar effects on both heme formation and Fe/S protein biosynthesis were seen in organello using mitochondria isolated from cells grown under iron-limiting conditions. The correlation between MRS3/4 expression levels and the efficiency of the two iron-utilizing processes was lost upon detergent lysis of mitochondria. As no significant changes in the mitochondrial membrane potential were observed upon overexpression or deletion of MRS3/4, our results suggest that Mrs3/4p carriers are directly involved in mitochondrial iron uptake. Mrs3/4p function in mitochondrial iron transport becomes evident under iron-limiting conditions only, indicating that the two carriers do not represent the sole system for mitochondrial iron acquisition.


Journal of Molecular Biology | 1991

MRS3 and MRS4, two suppressors of mtRNA splicing defects in yeast, are new members of the mitochondrial carrier family.

Gerlinde Wiesenberger; Thomas A. Link; Uwe von Ahsen; Martin Waldherr; Rudolf J. Schweyen

When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.


The Plant Cell | 2009

A Root-Expressed Magnesium Transporter of the MRS2/MGT Gene Family in Arabidopsis thaliana Allows for Growth in Low-Mg2+ Environments

Michael Gebert; Karoline Meschenmoser; Soňa Svidová; Julian Weghuber; Rudolf J. Schweyen; Karolin Eifler; Henning Lenz; Katrin Weyand; Volker Knoop

The MRS2/MGT gene family in Arabidopsis thaliana belongs to the superfamily of CorA-MRS2-ALR-type membrane proteins. Proteins of this type are characterized by a GMN tripeptide motif (Gly-Met-Asn) at the end of the first of two C-terminal transmembrane domains and have been characterized as magnesium transporters. Using the recently established mag-fura-2 system allowing direct measurement of Mg2+ uptake into mitochondria of Saccharomyces cerevisiae, we find that all members of the Arabidopsis family complement the corresponding yeast mrs2 mutant. Highly different patterns of tissue-specific expression were observed for the MRS2/MGT family members in planta. Six of them are expressed in root tissues, indicating a possible involvement in plant magnesium supply and distribution after uptake from the soil substrate. Homozygous T-DNA insertion knockout lines were obtained for four members of the MRS2/MGT gene family. A strong, magnesium-dependent phenotype of growth retardation was found for mrs2-7 when Mg2+ concentrations were lowered to 50 μM in hydroponic cultures. Ectopic overexpression of MRS2-7 from the cauliflower mosaic virus 35S promoter results in complementation and increased biomass accumulation. Green fluorescent protein reporter gene fusions indicate a location of MRS2-7 in the endomembrane system. Hence, contrary to what is frequently found in analyses of plant gene families, a single gene family member knockout results in a strong, environmentally dependent phenotype.


Biochimica et Biophysica Acta | 2009

The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane

Elisabeth M. Froschauer; Rudolf J. Schweyen; Gerlinde Wiesenberger

The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe(2+) homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe(2+) utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe(2+) which was driven by the external Fe(2+) concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Delta failed to show this rapid Fe(2+) uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe(2+) uptake rates. Cu(2+) was transported at similar rates as Fe(2+), while other divalent cations, such as Zn(2+) and Cd(2+) apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe(2+) across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.


Journal of Biological Chemistry | 2002

The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance.

Jochen A. Stadler; Rudolf J. Schweyen

To identify yeast genes involved in cobalt detoxification, we performed RNA expression profiling experiments and followed changes in gene activity upon cobalt stress on a genome-wide scale. We found that cobalt stress specifically results in an immediate and dramatic induction of genes involved in iron uptake. This response is dependent on the Aft1 protein, a transcriptional factor known to regulate a set of genes involved in iron uptake and homeostasis (iron regulon). Like iron starvation, cobalt stress induces accumulation of the Aft1 protein in the nucleus to activate transcription of its target genes. Cells lacking the AFT1 gene (aft1) are hypersensitive to cobalt as well as to other transition metals, whereas expression of the dominant AFT1–1 up allele, which results in up-regulation of AFT1-controlled genes, confers resistance. Cobalt resistance correlates with an increase in intracellular iron in AFT1–1 up cells, and sensitivity of aft1 cells is associated with a lack of iron accumulation. Furthermore, elevated iron levels in the growth medium suppress the cobalt sensitivity of the aft1 mutant cells, even though they increase cellular cobalt. Results presented indicate that yeast cells acquire cobalt tolerance by activating the Aft1p-dependent iron regulon and thereby increasing intracellular iron levels.


Current Genetics | 1993

A multitude of suppressors of group II intron-splicing defects in yeast

Martin Waldherr; Antonella Ragnini; Bernhard Jank; Roman Teply; Gerlinde Wiesenberger; Rudolf J. Schweyen

Disruption of the nuclear MRS2 gene (mrs2-1 mutation) causes a strong pet- phenotype in strains with mitochondrial group II introns, and a leaky pet- phenotype in strains without group II introns. MRS3 and MRS4, the genes for two mitochondrial-solute carrier proteins, can suppress both phenotypes when present in high-copy-number plasmids. In order to search for further multicopy suppressors of the mrs2-1 mutant phenotype, an yeast genomic DNA library, MW90, was constructed in YEp351 from a strain deleted for the MRS2, MRS3 and MRS4 genes. Ten different Sau3A DNA fragments that act as multicopy suppressors of the mrs2-1 respiratory-deficient phenotype were isolated from this library. Some of the newly isolated genes suppress the pet- phenotypes of mrs2-1 cells in strains with and without mitochondrial group II introns. Other genes, however, are suppressors only for the mitochondrial intron-less strains. This supports the notion that the MRS2 gene product is bifunctional i.e., it is essential for the splicing of group II introns and is also involved in processes of mitochondrial biogenesis other than RNA splicing.


Biophysical Journal | 2007

Mrs2p Forms a High Conductance Mg2+ Selective Channel in Mitochondria

Rainer Schindl; Julian Weghuber; Christoph Romanin; Rudolf J. Schweyen

Members of the CorA-Mrs2-Alr1 superfamily of Mg2+ transporters are ubiquitous among pro- and eukaryotes. The crystal structure of a bacterial CorA protein has recently been solved, but the mode of ion transport of this protein family remained obscure. Using single channel patch clamping we unequivocally show here that the mitochondrial Mrs2 protein forms a Mg2+-selective channel of high conductance (155 pS). It has an open probability of ∼60% in the absence of Mg2+ at the matrix site, which decreases to ∼20% in its presence. With a lower conductance (∼45 pS) the Mrs2 channel is also permeable for Ni2+, whereas no permeability has been observed for either Ca2+, Mn2+, or Co2+. Mutational changes in key domains of Mrs2p are shown either to abolish its Mg2+ transport or to change its characteristics toward more open and partly deregulated states. We conclude that Mrs2p forms a high conductance Mg2+ selective channel that controls Mg2+ influx into mitochondria by an intrinsic negative feedback mechanism.

Collaboration


Dive into the Rudolf J. Schweyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Nowikovsky

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Juraj Gregan

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Sponder

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Weghuber

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Siegfried Reipert

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Soňa Svidová

Max F. Perutz Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge