Rudolf Zechner
University of Graz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rudolf Zechner.
American Journal of Physiology-endocrinology and Metabolism | 2009
Martina Schweiger; Achim Lass; Robert A. Zimmermann; Thomas O. Eichmann; Rudolf Zechner
Neutral lipid storage disease (NLSD) is a group of autosomal recessive disorders characterized by the excessive accumulation of neutral lipids in multiple tissues. Recently, two genes, adipose triglyceride lipase (ATGL/PNPLA2) and comparative gene identification-58 (CGI-58/ABHD5), have been shown to cause NLSD. ATGL specifically hydrolyzes the first fatty acid from triacylglycerols (TG) and CGI-58/ABHD5 stimulates ATGL activity by a currently unknown mechanism. Mutations in both the ATGL and the CGI-58 genes are associated with systemic TG accumulation, yet the resulting clinical manifestations are not identical. Patients with defective ATGL function suffer from more severe myopathy (NLSDM) than patients with defective CGI-58 function. On the other hand, CGI-58 mutations are always associated with ichthyosis (NLSDI), which was not observed in patients with defective ATGL function. These observations indicate an ATGL-independent function of CGI-58. This review summarizes recent findings with the goal of relating structural variants of ATGL and CGI-58 to functional consequences in lipid metabolism.
Cell Metabolism | 2011
Thomas Scherer; James O'Hare; Kelly A. Diggs-Andrews; Martina Schweiger; Bob Cheng; Claudia Lindtner; Elizabeth Zielinski; Prashant Vempati; Kai Su; Shveta Dighe; Thomas Milsom; Michelle A. Puchowicz; Ludger Scheja; Rudolf Zechner; Simon J. Fisher; Stephen F. Previs; Christoph Buettner
White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality.
Journal of Biological Chemistry | 2011
Ulrike Taschler; Franz P. W. Radner; Christoph Heier; Renate Schreiber; Martina Schweiger; Gabriele Schoiswohl; Karina Preiss-Landl; Doris Jaeger; Birgit Reiter; Harald Koefeler; Jacek Wojciechowski; Christian Theussl; Josef M. Penninger; Achim Lass; Guenter Haemmerle; Rudolf Zechner; Robert Zimmermann
Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.
Nature Genetics | 2012
Anaïs Grall; Éric Guaguère; Sandrine Planchais; Susanne Grond; E. Bourrat; Ingrid Hausser; Christophe Hitte; Matthieu Le Gallo; Céline Derbois; Gwang-Jin Kim; Laetitia Lagoutte; Frédérique Degorce-Rubiales; Franz P. W. Radner; Anne Thomas; Sébastien Küry; Emmanuel Bensignor; Jacques Fontaine; Didier Pin; Robert Zimmermann; Rudolf Zechner; Mark Lathrop; Francis Galibert; Catherine André; Judith Fischer
Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family.
Molecular Systems Biology | 2014
Brian T. Weinert; Vytautas Iesmantavicius; Tarek Moustafa; Christian Schölz; Sebastian A. Wagner; Christoph Magnes; Rudolf Zechner; Chunaram Choudhary
Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth‐arrested cells in a manner that depended on acetyl‐CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl‐CoA concentration in vivo and acetyl‐CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl‐CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl‐CoA.
American Journal of Physiology-endocrinology and Metabolism | 2009
Thomas J. Alsted; Lars Nybo; Martina Schweiger; Christian Fledelius; Poul Jacobsen; Robert A. Zimmermann; Rudolf Zechner; Bente Kiens
Mobilization of fatty acids from stored triacylglycerol (TG) in adipose tissue and skeletal muscle [intramyocellular triacylglycerol (IMTG)] requires activity of lipases. Although exercise training increases the lipolytic capacity of skeletal muscle, the expression of hormone-sensitive lipase (HSL) is not changed. Recently, adipose triglyceride lipase (ATGL) was identified as a TG-specific lipase in various rodent tissues. To investigate whether human skeletal muscle ATGL protein is regulated by endurance exercise training, 10 healthy young men completed 8 wk of supervised endurance exercise training. Western blotting analysis on lysates of skeletal muscle biopsy samples revealed that exercise training induced a twofold increase in skeletal muscle ATGL protein content. In contrast to ATGL, expression of comparative gene identification 58 (CGI-58), the activating protein of ATGL, and HSL protein was not significantly changed after the training period. The IMTG concentration was significantly decreased by 28% at termination of the training program compared with before. HSL-phoshorylation at Ser(660) was increased, HSL-Ser(659) phosporylation was unchanged, and HSL-phoshorylation at Ser(565) was decreased altogether, indicating an enhanced basal activity of this lipase. No change was found in the expression of diacylglycerol acyl transferase 1 (DGAT1) after training. Inhibition of HSL with a monospecific, small molecule inhibitor (76-0079) and stimulation of ATGL with CGI-58 revealed that significant ATGL activity is present in human skeletal muscle. These results suggest that ATGL in addition to HSL may be important for human skeletal muscle lipolysis.
Journal of Lipid Research | 2013
Nina M. Pollak; Martina Schweiger; Doris Jaeger; Dagmar Kolb; Manju Kumari; Renate Schreiber; Stephanie Kolleritsch; Philipp Markolin; Gernot F. Grabner; Christoph Heier; Kathrin A. Zierler; Thomas Rülicke; Robert Zimmermann; Achim Lass; Rudolf Zechner; Guenter Haemmerle
Cardiac triacylglycerol (TG) catabolism critically depends on the TG hydrolytic activity of adipose triglyceride lipase (ATGL). Perilipin 5 (Plin5) is expressed in cardiac muscle (CM) and has been shown to interact with ATGL and its coactivator comparative gene identification-58 (CGI-58). Furthermore, ectopic Plin5 expression increases cellular TG content and Plin5-deficient mice exhibit reduced cardiac TG levels. In this study we show that mice with cardiac muscle-specific overexpression of perilipin 5 (CM-Plin5) massively accumulate TG in CM, which is accompanied by moderately reduced fatty acid (FA) oxidizing gene expression levels. Cardiac lipid droplet (LD) preparations from CM of CM-Plin5 mice showed reduced ATGL- and hormone-sensitive lipase-mediated TG mobilization implying that Plin5 overexpression restricts cardiac lipolysis via the formation of a lipolytic barrier. To test this hypothesis, we analyzed TG hydrolytic activities in preparations of Plin5-, ATGL-, and CGI-58-transfected cells. In vitro ATGL-mediated TG hydrolysis of an artificial micellar TG substrate was not inhibited by the presence of Plin5, whereas Plin5-coated LDs were resistant toward ATGL-mediated TG catabolism. These findings strongly suggest that Plin5 functions as a lipolytic barrier to protect the cardiac TG pool from uncontrolled TG mobilization and the excessive release of free FAs.
Journal of Lipid Research | 2012
Martina Schweiger; Margret Paar; Christina Eder; Janina Brandis; Elena Moser; Gregor Gorkiewicz; Susanne Grond; Franz P. W. Radner; Ines K. Cerk; Irina Cornaciu; Monika Oberer; Sander Kersten; Rudolf Zechner; Robert Zimmermann; Achim Lass
The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGLs C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.
Journal of Biological Chemistry | 2013
Kathrin A. Zierler; Doris Jaeger; Nina M. Pollak; Sandra Eder; Gerald N. Rechberger; Franz P. W. Radner; Gerald Woelkart; Dagmar Kolb; Albrecht Schmidt; Manju Kumari; Karina Preiss-Landl; Burkert Pieske; Bernd Mayer; Robert A. Zimmermann; Achim Lass; Rudolf Zechner; Guenter Haemmerle
Background: The role of CGI-58 in muscle triacylglycerol catabolism is unknown. The presence of CGI-58 increases the lipolytic activity of adipose triglyceride lipase (ATGL). Results: Muscle-specific CGI-58 deficiency causes muscle steatosis and cardiac dysfunction despite elevated ATGL protein expression. Conclusion: Muscle lipolysis critically depends on both CGI-58 and ATGL. Significance: Muscle CGI-58 deficiency provokes severe cardiac steatosis and dysfunction. Efficient catabolism of cellular triacylglycerol (TG) stores requires the TG hydrolytic activity of adipose triglyceride lipase (ATGL). The presence of comparative gene identification-58 (CGI-58) strongly increased ATGL-mediated TG catabolism in cell culture experiments. Mutations in the genes coding for ATGL or CGI-58 in humans cause neutral lipid storage disease characterized by TG accumulation in multiple tissues. ATGL gene mutations cause a severe phenotype especially in cardiac muscle leading to cardiomyopathy that can be lethal. In contrast, CGI-58 gene mutations provoke severe ichthyosis and hepatosteatosis in humans and mice, whereas the role of CGI-58 in muscle energy metabolism is less understood. Here we show that mice lacking CGI-58 exclusively in muscle (CGI-58KOM) developed severe cardiac steatosis and cardiomyopathy linked to impaired TG catabolism and mitochondrial fatty acid oxidation. The marked increase in ATGL protein levels in cardiac muscle of CGI-58KOM mice was unable to compensate the lack of CGI-58. The addition of recombinant CGI-58 to cardiac lysates of CGI-58KOM mice completely reconstituted TG hydrolytic activities. In skeletal muscle, the lack of CGI-58 similarly provoked TG accumulation. The addition of recombinant CGI-58 increased TG hydrolytic activities in control and CGI-58KOM tissue lysates, elucidating the limiting role of CGI-58 in skeletal muscle TG catabolism. Finally, muscle CGI-58 deficiency affected whole body energy homeostasis, which is caused by impaired muscle TG catabolism and increased cardiac glucose uptake. In summary, this study demonstrates that functional muscle lipolysis depends on both CGI-58 and ATGL.
Journal of Biological Chemistry | 2011
Elma Aflaki; Branislav Radovic; Prakash G. Chandak; Dagmar Kolb; Tobias Eisenberg; Julia Ring; Ismene Fertschai; Andreas Uellen; Heimo Wolinski; Sepp-Dieter Kohlwein; Rudolf Zechner; Sanja Levak-Frank; Wolfgang Sattler; Wolfgang F. Graier; Roland Malli; Frank Madeo; Dagmar Kratky
Programmed cell death of lipid-laden macrophages is a prominent feature of atherosclerotic lesions and mostly ascribed to accumulation of excess intracellular cholesterol. The present in vitro study investigated whether intracellular triacylglycerol (TG) accumulation could activate a similar apoptotic response in macrophages. To address this question, we utilized peritoneal macrophages isolated from mice lacking adipose triglyceride lipase (ATGL), the major enzyme responsible for TG hydrolysis in multiple tissues. In Atgl−/− macrophages, we observed elevated levels of cytosolic Ca2+ and reactive oxygen species, stimulated cytochrome c release, and nuclear localization of apoptosis-inducing factor. Fragmented mitochondria prior to cell death were indicative of the mitochondrial apoptosis pathway being triggered as a consequence of defective lipolysis. Other typical markers of apoptosis, such as externalization of phosphatidylserine in the plasma membrane, caspase 3 and poly(ADP-ribose) polymerase cleavage, were increased in Atgl−/− macrophages. An artificial increase of cellular TG levels by incubating wild-type macrophages with very low density lipoprotein closely mimicked the apoptotic phenotype observed in Atgl−/− macrophages. Results obtained during the present study define a novel pathway linking intracellular TG accumulation to mitochondrial dysfunction and programmed cell death in macrophages.