Rufeng Lu
Zhejiang Chinese Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rufeng Lu.
Infection, Genetics and Evolution | 2015
Haibo Wu; Rufeng Lu; Xiaorong Peng; Lihua Xu; Linfang Cheng; Xiangyun Lu; Changzhong Jin; Tiansheng Xie; Hangping Yao; Nanping Wu
We characterized two novel highly pathogenic H5N6 influenza viruses isolated from Chinese poultry in 2013. Genomic analysis showed that both isolates were reassortants, and derived their genes from H5 and H6 subtype viruses found in poultry in China. The virulence of the two isolates was examined in chickens and mice, and both isolates were found to be highly pathogenic in chickens and only moderately virulent for mice. Our results show that continued circulation of these viruses could endanger both avian species and humans.
Infection, Genetics and Evolution | 2015
Haibo Wu; Rufeng Lu; Xiaoxin Wu; Xiaorong Peng; Lihua Xu; Linfang Cheng; Xiangyun Lu; Changzhong Jin; Tiansheng Xie; Hangping Yao; Nanping Wu
During the surveillance for avian influenza viruses (AIVs) in live poultry markets (LPMs) in Eastern China, in 2013, an H10N2 AIV was isolated from a domestic duck. Phylogenetic analysis showed that this strain received its genes from H10, H1 and H7 AIVs of wild birds in China. The virulence of this strain was examined in chickens and mice, and was found to be low pathogenic in chickens but demonstrated moderate pathogenicity in mice. These results suggest that active surveillance of AIVs in LPMs should be used in an early warning system for avian influenza outbreaks.
Journal of Clinical Virology | 2015
Haibo Wu; Rufeng Lu; Xiaoxin Wu; Xiaorong Peng; Lihua Xu; Linfang Cheng; Xiangyun Lu; Changzhong Jin; Tiansheng Xie; Hangping Yao; Nanping Wu
BACKGROUND Since 2004, the H10N7 subtype avian influenza virus (AIV) has caused sporadic human infections with variable clinical symptoms world-wide. However, there is limited information pertaining to the molecular characteristics of H10N7 AIVs in China. OBJECTIVE To more fully characterize the genetic relationships between three novel H10N7 strains isolated from chickens in Eastern China and the strains isolated from birds throughout Asia, and to determine the pathogenicity of the H10N7 isolates in vivo. STUDY DESIGN All eight gene segments from the Chinese H10N7 strains were sequenced and compared with AIV strains available in GenBank. The virulence of the three isolates was determined in chickens and mice. RESULTS Three H10N7 subtype avian influenza viruses were isolated from chickens in live poultry markets in Eastern China in 2014: (1) A/chicken/Zhejiang/2C66/2014(H10N7) (ZJ-2C66), (2) A/chicken/Zhejiang/2CP2/2014(H10N7) (ZJ-2CP2), and (3) A/chicken/Zhejiang/2CP8/2014(H10N7) (ZJ-2CP8). Phylogenetic analysis indicated that the viruses contained genetic material from H10, H2, H7, and H3 AIV strains that were circulating at the same time. The reassortant H10N7 viruses were found to be minimally pathogenic in chickens and moderately pathogenic in mice. The viruses were able to replicate in mice without prior adaptation. CONCLUSION These results suggest that H10N7 surveillance in poultry should be used as an early warning system for avian influenza outbreaks. The novel strains identified here may post a threat to human health in the future if they continue to circulate.
Frontiers in Microbiology | 2017
Haibo Wu; Rufeng Lu; Xiuming Peng; Xiaorong Peng; Linfang Cheng; Fumin Liu; Nanping Wu
Recently, novel variants of H5 highly pathogenic avian influenza viruses (AIVs) have been frequently isolated from poultry and wild birds in Asia, Europe and North America. Live poultry markets (LPMs) play an important role in the dissemination of influenza viruses. Four H5N2 AIVs were isolated from poultry during surveillance of AIVs in LPMs in Eastern China, in 2015. Whole-genome sequencing, combined with phylogenetic and antigenic analyses were performed to characterize these viruses. These H5N2 viruses had undergone extensive reassortment resulting in two genetic groups of viruses in poultry. These viruses exhibited slightly pathogenicity in mice, and replicated without prior adaptation. The continued circulation of these novel H5N2 viruses may represent a threat to human health.
Infection, Genetics and Evolution | 2017
Haibo Wu; Xiuming Peng; Rufeng Lu; Lihua Xu; Fumin Liu; Linfang Cheng; Xiangyun Lu; Hangping Yao; Nanping Wu
A novel reassortant H5N8 highly pathogenic avian influenza (HPAI) virus was recently identified in Asia, Europe, and North America. The H5N8 HPAI virus has raised serious concerns regarding the potential risk for human infection. However, the molecular changes responsible for allowing mammalian infection in H5N8 HPAI viruses are not clear. The objective of this study was to identify amino acid substitutions that are potentially associated with the adaptation of H5N8 HPAI viruses to mammals. In this study, an avian-origin H5N8 virus was adapted to mice through serial lung-to-lung passage. The virulence of mouse-adapted virus was increased and adaptive mutations, HA (A149V) and PB2 (E627K), were detected after the ninth passage in each series of mice. Reverse genetics were used to generate reassortants of the wild type and mouse-adapted viruses. Substitutions in the HA (A149V) and PB2 (E627K) proteins led to enhanced viral virulence in mice, the viruses displayed expanded tissue tropism, and increased replication kinetics in mammalian cells. Continued surveillance in poultry for amino acid changes that might indicate H5N8 HPAI viruses pose a threat to human health is required.
Archives of Virology | 2017
Haibo Wu; Rufeng Lu; Xiuming Peng; Xiaorong Peng; Bin Chen; Linfang Cheng; Nanping Wu
During the surveillance for avian influenza viruses (AIVs) in live poultry markets in Eastern China, in 2016, a novel reassortant H7N6 AIV was isolated from a chicken. Phylogenetic analysis showed that this strain received its genes from H9N2, H7N9 and H5N6 AIVs infecting poultry in China. This strain showed moderate pathogenicity in mice and was able to replicate in mice without prior adaptation. Considering that this novel reassorted H7N6 virus was isolated from poultry in this study, it is possible that chickens play an important role in the generation of novel reassorted H7N6 AIVs.
Archives of Virology | 2016
Haibo Wu; Rufeng Lu; Xiuming Peng; Linfang Cheng; Changzhong Jin; Xiangyun Lu; Tiansheng Xie; Hangping Yao; N Wu
H6 subtype avian influenza viruses (AIVs) possess the ability to cross the species barrier to infect mammals and pose a threat to human health. From June 2014 to July 2015, 12 H6N6 AIVs were isolated from chickens in live-poultry markets in Zhejiang Province, Eastern China. Phylogenetic analysis showed that these isolates received their genes from H6 and H9N2 subtype AIVs of poultry in China. These novel reassortant viruses showed moderate pathogenicity in mice and were able to replicate in mice without prior adaptation. Considering that novel reassorted H6N6 viruses were isolated from chickens in this study, it is possible that these chickens play an important role in the generation of novel reassorted H6N6 AIVs, and these results emphasize the need for continued surveillance of the H6N6 AIVs circulating in poultry.
Virology Journal | 2018
Haibo Wu; Fan Yang; Fumin Liu; Rufeng Lu; Xiuming Peng; Bin Chen; Hangping Yao; Nanping Wu
BackgroundThe H6N1 subtype of avian influenza viruses (AIVs) can infect people with an influenza-like illness; the H6N1 viruses possess the ability for zoonotic transmission from avians into mammals, and possibly pose a threat to human health.MethodsIn 2017, live poultry markets (LPMs) in Zhejiang Province were surveyed for AIVs. To better understand the genetic relationships between these strains from Eastern China and other AIVs, all gene segments of these strains were sequenced and compared with sequences available in GenBank. In this study, we analyzed the receptor-binding specificity, antigenic characteristics, and pathogenicity of these two H6N1 viruses.ResultsIn 2017, two H6N1 AIVs were isolated from chickens during surveillance for AIVs in LPMs in Eastern China. Phylogenetic analysis showed that these strains shared genetic characteristics from H6, H10, H1, and H4 AIVs found in ducks and wild birds in East Asia. These AIV strains were able to replicate in mice without prior adaptation.ConclusionsIn this study, we report the discovery of new strains of H6N1 viruses from chickens with novel gene reassortments. Our results suggest that these chickens play an important role generating novel reassortments in AIVs, and emphasize the need for continued surveillance of AIV strains circulating in poultry.
Archives of Virology | 2018
Haibo Wu; Fan Yang; Rufeng Lu; Lihua Xu; Fumin Liu; Xiuming Peng; Nanping Wu
In 2015, an H5N1 influenza virus was isolated from a pig in Zhejiang Province, Eastern China. This strain was characterized by whole-genome sequencing with subsequent phylogenetic analysis. Phylogenetic analysis showed that all segments from this strain belonged to clade 2.3.2 and that it had received its genes from poultry influenza viruses in China. A Glu627Lys mutation associated with pathogenicity was observed in the PB2 protein. This strain was moderately pathogenic in mice and was able to replicate without prior adaptation. These results suggest that active surveillance of swine influenza should be used as an early warning system for influenza outbreaks in mammals.
Virus Genes | 2012
Hai-bo Wu; Chao-tan Guo; Rufeng Lu; Lihua Xu; En-kang Wo; Jin-biao You; Yi-ting Wang; Qiao-gang Wang; Nan-ping Wu