Rufus L. Brunt
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rufus L. Brunt.
International Geology Review | 2015
Matthew P. McKay; Amy L. Weislogel; Andrea Fildani; Rufus L. Brunt; David M. Hodgson; Stephen S. Flint
Along the >650 km long southern margin of the Karoo Basin in South Africa, we traversed four evenly spaced stratigraphic transects and collected 22 samples of volcanic, air-fall tuffs thought to be distal deposits derived from the Permian–Triassic Southern Gondwanan volcanic arc. We present 469 new U-Pb zircon ages determined by sensitive high-resolution ion microprobe reverse geometry (SHRIMP-RG) at the Stanford–USGS Microanalytical Center in order to constrain the maximum depositional ages for the southern Karoo Basin strata. Weighted means of these youngest coherent zircon populations were selected to maximize the number of analyses while minimizing the mean square weighted deviation (MSWD) to increase the robustness and decrease the influence of Pb-loss and inheritance in determining the maximum depositional age. Maximum depositional ages for the marine Ecca Group range from 250 to 274 Ma, whereas in the conformably overlying terrestrial Beaufort Group maximum depositional ages ranged from 257 to 452 Ma. Across the southern Karoo Basin, the Ecca Group tuffs produce maximum depositional ages that young upward; however, the Beaufort Group tuffs yield maximum depositional ages that are geochronologically out of sequence. Furthermore, maximum depositional ages of the Beaufort Group tuffs are consistently older than ash ages within the underlying marine strata. Our results are supported by previously published U-Pb tuff zircon geochronology in the Karoo Basin and demonstrate that the presence of out-of-sequence, older tuff ages are repeatable in Beaufort Group tuffs along the southern margin of the basin. We propose that tuffs in the Karoo Basin are correlative with tuffs in southern South America, and that the age spectra of these tuffs were influenced by magmatic crustal recycling. We use these data to highlight the complexity of U-Pb zircon datasets from tuffs, address the use of U-Pb zircon ages to provide absolute age controls, and discuss the implications of these new age controls on the Permian-Triassic Karoo strata.
Geosphere | 2014
Willem C. van der Merwe; David M. Hodgson; Rufus L. Brunt; Stephen S. Flint
The geomorphology and seismic stratigraphy of deep-water clastic systems from slope valleys through channel-levee systems to basin-floor fans have been observed and described in modern and ancient subsurface examples around the world. However, the distribution of sedimentary facies, grain size, and small-scale architectural elements remains poorly constrained. Extensive exposures (>2500 km 2 ) of four stacked deep-water composite sequences have been mapped from heterolithic channel-levee systems on the slope to sand-rich basin-floor deposits. The data set from Units C–F of the Fort Brown Formation in the Permian Laingsburg depocenter of South Africa permits a unique opportunity to document and compare their depositional architecture at a high resolution for tens of kilometers downdip. Isopach thickness maps indicate that compensational stacking across multiple stratigraphic scales occurs on the basin floor, whereas preferred axial pathways were present on the slope, leading to subvertical stacking patterns. Units C and D are sand-attached systems; slope valley systems are mapped to pass transitionally downslope through levee-confined channels to lobe complexes over distances of >30 km. The slope valley fills of Units E and F, however, are separated from their downdip sand-rich lobe complexes by a thin, sand-poor tract several kilometers in length and are termed sand detached. Locally, this sand-poor tract is characterized by a distinctive facies association of thin-bedded turbidites with numerous scours mantled with rip-up clasts, and a top surface that includes megaflutes and remobilized sediments. This assemblage is interpreted to indicate a widespread area of sand bypass. This unique data set provides an exploration-scale insight and understanding of how different segments of a prograding slope evolved over time in terms of gradient, physiography, and hence the degree to which sand was stored or bypassed to the basin floor, and the evolution from sand-attached to sand-detached systems. The development of sand-detached systems suggests that a steeper gradient formed, possibly related to developing underlying structure, that led to the development of a stepped slope profile. The study highlights that updip stratigraphic trapping at reservoir scale can occur with minor bathymetric changes.
Geological Society, London, Special Publications | 2017
Luz E. Gomis-Cartesio; Miquel Poyatos-Moré; Stephen S. Flint; David M. Hodgson; Rufus L. Brunt; Henry DeV. Wickens
Abstract The position and process regime of paralic systems relative to the shelf edge rollover is a major control on sediment transfer into deep water. The depositional strike and dip variability of an exhumed Permian shelf edge succession has been studied in the Paardeberg Ridge, Karoo Basin. Siltstone-rich slope turbidites are overlain by 25–75 m-thick prodelta parasequences. These are truncated by a 30 m-thick sandstone-prone unit of tabular or convex-topped sandstones, interpreted as wave-modified mouth bars, cut by multiple irregular concave-upwards erosive surfaces overlain by sandstones, interpreted as distributary channels. The stratigraphic context, lithofacies and architecture are consistent with a mixed-influence shelf edge delta; the erosional base to the unit marks a basinwards shift in facies, consistent with a sequence boundary. Channels become thicker, wider, more erosive and incise into deeper-water facies downdip and correlate with sandstone-rich upper slope turbidites, all of which support the bypass of sand across the rollover. The overall progradational stacking pattern results in a stratigraphic decrease in channel dimensions. The results of this study suggest a predictable relationship between channel geometry, facies and position on the shelf-to-slope profile under a mixed wave and fluvial process regime.
AAPG Bulletin | 2016
Emma A. Morris; David M. Hodgson; Stephen S. Flint; Rufus L. Brunt; Stefan M. Luthi; Yolanda Kolenberg
The morphological evolution of submarine channel systems can be documented using high-resolution three-dimensional seismic data sets. However, these studies provide limited information on the distribution of sedimentary facies within channel fills, channel-scale stacking patterns, or the detailed stratigraphic relationship with adjacent levee-overbank deposits. Seismic-scale outcrops of unit C2 in the Permian Fort Brown Formation, Karoo Basin, South Africa, on two subparallel fold limbs comprise thin-bedded successions, interpreted as external levee deposits, which are adjacent to channel complexes, with constituent channels filled with thick-bedded structureless sandstones, thinner-bedded channel margin facies, and internal levee deposits. Research boreholes intersect all these deposits, to link sedimentary facies and channel stacking patterns identified in core and on image logs and detailed outcrop correlation panels. Key characteristics, including depth of erosion, stacking patterns, and cross-cutting relationships, have been constrained, allowing paleogeographic reconstruction of six channel complexes in a 36-km2 (14-mi2) area. The system evolved from an early, deeply incised channel complex, through a series of external levee-confined and laterally stepping channel complexes culminating in an aggradational channel complex confined by both internal and external levees. Down-dip divergence of six channel complexes from the same location suggests the presence of a unique example of an exhumed deep-water avulsion node. Down-dip, external levees are supplied by flows that escaped from channel complexes of different ages and spatial positions and are partly confined and share affinities with internal levee successions. The absence of frontal lobes suggests that the channels remained in sand bypass mode immediately after avulsion.
Geological Society of America Bulletin | 2018
Hannah L. Brooks; David M. Hodgson; Rufus L. Brunt; Jeff Peakall; Menno Hofstra; Stephen S. Flint
Submarine channel-lobe transition zones separate well-defined channels from well-defined lobes and form morphologically complicated areas, commonly located at breaks in slope. These areas play a vital role in the transfer of sediment through deep-water systems. Extensive outcrop exposures in the Karoo Basin, South Africa, permit investigation of the depositional architecture and evolution of entirely exhumed dip transects of a channel-lobe transition zone for the first time. Furthermore, the excellent paleogeographic constraint allows correlation to genetically related updip channel-levee systems and downdip lobe deposits over 40 km, with strike control over 20 km. Unlike the single time slice afforded by modern systems, the Karoo example uniquely allows study of the temporal shifting of the channel-lobe transition zone and transfer into the stratigraphic record. Key lateral changes along the base of slope include the variation from an interfingering levee-lobe transition zone to a bypass-dominated channel-lobe transition zone over a width of 14 km. Key recognition criteria for channel-lobe transition zones in the ancient record include combinations of scours and megaflutes, composite erosional surfaces, mudstone clast/coarse-grained sediment lags, and remnants of depositional bed forms, such as sediment waves. Documented here in a single channel-lobe transition zone, these features are arranged in a zone of juxtaposed remnant erosional and depositional features. The zone reaches 6 km in length, formed by at least four stages of expansion/contraction or migration. Strike variations and changes in the dimensions of the channel-lobe transition zone through time are interpreted to be the result of physiographic changes and variations in flow dynamics across the base of slope. The dynamic nature of channel-lobe transition zones results in complicated and composite stratigraphy, with preservation potential generally low but increasing distally and laterally away from the mouth of the feeder channel system. Here, we present the first generic model to account for dynamic channel-lobe transition zone development, encompassing distinctive recognition criteria, fluctuations in the morphology and position of the zone, and the complex transfer into the sedimentary record.
Journal of Sedimentary Research | 2016
David M. Hodgson; Ian A. Kane; Stephen S. Flint; Rufus L. Brunt; Andrea Ortiz-Karpf
Sedimentology | 2014
Emma A. Morris; David M. Hodgson; Rufus L. Brunt; Stephen S. Flint
Journal of Sedimentary Research | 2014
Emma A. Morris; David M. Hodgson; Stephen S. Flint; Rufus L. Brunt; Peter J Butterworth; Jona Verhaeghe
Journal of Sedimentary Research | 2016
Miquel Poyatos-Moré; George E.D. Jones; Rufus L. Brunt; David M. Hodgson; Richard J. Wild; Stephen S. Flint
Sedimentology | 2018
Hannah L. Brooks; David M. Hodgson; Rufus L. Brunt; Jeff Peakall; Stephen S. Flint