Rugang Li
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rugang Li.
PLOS ONE | 2012
Rugang Li; Shan Gao; Alvaro G. Hernandez; W. Patrick Wechter; Zhangjun Fei; Kai Shu Ling
Small RNAs (sRNA), including microRNAs (miRNA) and small interfering RNAs (siRNA), are produced abundantly in plants and animals and function in regulating gene expression or in defense against virus or viroid infection. Analysis of siRNA profiles upon virus infection in plant may allow for virus identification, strain differentiation, and de novo assembly of virus genomes. In the present study, four suspected virus-infected tomato samples collected in the U.S. and Mexico were used for sRNA library construction and deep sequencing. Each library generated between 5–7 million sRNA reads, of which more than 90% were from the tomato genome. Upon in-silico subtraction of the tomato sRNAs, the remaining highly enriched, virus-like siRNA pools were assembled with or without reference virus or viroid genomes. A complete genome was assembled for Potato spindle tuber viroid (PSTVd) using siRNA alone. In addition, a near complete virus genome (98%) also was assembled for Pepino mosaic virus (PepMV). A common mixed infection of two strains of PepMV (EU and US1), which shared 82% of genome nucleotide sequence identity, also could be differentially assembled into their respective genomes. Using de novo assembly, a novel potyvirus with less than 60% overall genome nucleotide sequence identity to other known viruses was discovered and its full genome sequence obtained. Taken together, these data suggest that the sRNA deep sequencing technology will likely become an efficient and powerful generic tool for virus identification in plants and animals.
Virology | 2017
Yi Zheng; Shan Gao; Chellappan Padmanabhan; Rugang Li; Marco Galvez; Dina Gutierrez; Segundo Fuentes; Kai-Shu Ling; Jan Kreuze; Zhangjun Fei
Accurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived small interfering RNAs has proven to be a highly efficient approach for virus discovery. Here we present VirusDetect, a bioinformatics pipeline that can efficiently analyze large-scale small RNA (sRNA) datasets for both known and novel virus identification. VirusDetect performs both reference-guided assemblies through aligning sRNA sequences to a curated virus reference database and de novo assemblies of sRNA sequences with automated parameter optimization and the option of host sRNA subtraction. The assembled contigs are compared to a curated and classified reference virus database for known and novel virus identification, and evaluated for their sRNA size profiles to identify novel viruses. Extensive evaluations using plant and insect sRNA datasets suggest that VirusDetect is highly sensitive and efficient in identifying known and novel viruses. VirusDetect is freely available at http://bioinfo.bti.cornell.edu/tool/VirusDetect/.
Genome Announcements | 2013
Rugang Li; Shan Gao; Zhangjun Fei; Kai-Shu Ling
ABSTRACT The complete genomic sequence of a new tobamovirus in tomatoes was determined through deep sequencing and assembly of small RNAs, then validated through Sanger sequencing. Based on the low sequence identity (≤85%) to known viruses and a close phylogenetic relationship to tobamoviruses, it was identified as a new species.
Genome Announcements | 2015
Chellappan Padmanabhan; Yi Zheng; Rugang Li; Shu-E Sun; Deyong Zhang; Yong Liu; Zhangjun Fei; Kai-Shu Ling
ABSTRACT The complete genome sequence of Southern tomato virus (STV), a double-stranded RNA virus that affects tomato in China, was determined using small RNA deep sequencing. This Chinese isolate shares 99% sequence identity to other isolates from Mexico, France, Spain, and the United States. This is the first report of STV infecting tomatoes in Asia.
Genome Announcements | 2015
Rugang Li; Shan Gao; Sven Berendsen; Zhangjun Fei; Kai-Shu Ling
ABSTRACT The complete genome sequence of a new isolate of squash mosaic virus (SqMV) infecting squash plants in Spain was obtained using deep sequencing of small RNAs. The low nucleotide sequence identities, with only 87 to 88% for RNA1 and 84 to 86% for RNA2 to known SqMV isolates, suggested that this isolate belongs to a novel genotype.
Genome Announcements | 2015
Chellappan Padmanabhan; Yi Zheng; Rugang Li; Zhangjun Fei; Kai-Shu Ling
ABSTRACT The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next-generation sequencing. The identified isolate, STV_BD-13, shares a high degree of sequence identity (99%) with several known STV isolates worldwide.
Genome Announcements | 2014
Chellappan Padmanabhan; Shan Gao; Rugang Li; Shouan Zhang; Zhangjun Fei; Kai-Shu Ling
ABSTRACT We report here the complete genome sequence of an emerging genotype of tobacco streak virus (TSV) infecting zucchini squash in Florida (TSV_FL13-07), obtained using deep sequencing of short RNAs (sRNAs) and validation by Sanger sequencing. TSV_FL13-07 shares only <90% sequence identity in all three genomic RNAs to several known U.S. isolates.
Genome Announcements | 2015
Rugang Li; Yi Zheng; Zhangjun Fei; Kai-Shu Ling
ABSTRACT The complete genome sequence (6,423 nucleotides [nt]) of an emerging cucumber green mottle mosaic virus (CGMMV) isolate on cucumber in North America was determined through deep sequencing of small (sRNA) and rapid amplification of cDNA ends. The virus shares 99% nucleotide sequence identity with the Asian genotype but only 90% with the European genotype.
Genome Announcements | 2015
Rugang Li; Yi Zheng; Zhangjun Fei; Kai-Shu Ling
ABSTRACT The complete genome sequence (4,267 nt) of a Melon necrotic spot virus (MNSV) isolate (ABCA13-01) infecting greenhouse cucumber in Canada was determined through deep sequencing of small RNAs. Its genome sequence was most closely related to MNSV-N (97%) but lacked a 55-nucleotide insertion at the 3′ untranslated region for resistance breaking.
Plant Disease | 2014
Kai-Shu Ling; Rugang Li; D. Groth-Helms; F. M. Assis-Filho
In recent years, viroid disease outbreaks have resulted in serious economic losses to a number of tomato growers in North America (1,2,3). At least three pospiviroids have been identified as the causal agents of tomato disease, including Potato spindle tuber viroid (PSTVd), Tomato chlorotic dwarf viroid (TCDVd), and Mexican papita viroid (MPVd). In the spring of 2013, a severe disease outbreak with virus-like symptoms (chlorosis and plant stunting) was observed in a tomato field located in the Dominican Republic, whose tomato production is generally exported to the United States in the winter months. The transplants were produced in house. The disease has reached an epidemic level with many diseased plants pulled and disposed of accordingly. Three samples collected in May of 2013 were screened by ELISA against 16 common tomato viruses (Alfalfa mosaic virus, Cucumber mosaic virus, Impatiens necrotic spot virus, Pepino mosaic virus, Potato virus X, Potato virus Y, Tobacco etch virus, Tobacco mosaic virus, Tobacco ringspot virus, Tomato aspermy virus, Tomato bushy stunt virus, Tomato mosaic virus, Tomato ringspot virus, Tomato spotted wilt virus, Groundnut ringspot virus, and Tomato chlorotic spot virus), a virus group (Potyvirus group), three bacteria (Clavibacter michiganensis subsp. michiganensis, Pectobacterium atrosepticum, and Xanthomonas spp.), and Phytophthora spp. No positive result was observed, despite the presence of symptoms typical of a viral-like disease. Further analysis by RT-PCR using Agdias proprietary pospiviroid group-specific primer resulted in positive reactions in all three samples. To determine which species of pospiviroid was present in these tomato samples, full-genomic products of the expected size (~360 bp) were amplified by RT-PCR using specific primers for PSTVd (4) and cloned using TOPO-TA cloning kit (Invitrogen, CA). A total of 8 to 10 clones from each isolate were selected for sequencing. Sequences from each clone were nearly identical and the predominant sequence DR13-01 was deposited in GenBank (Accession No. KF683200). BLASTn searches into the NCBI database demonstrated that isolate DR13-01 shared 97% sequence identity to PSTVd isolates identified in wild Solanum (U51895), cape gooseberry (EU862231), or pepper (AY532803), and 96% identity to the tomato-infecting PSTVd isolate from the United States (JX280944). The relatively lower genome sequence identity (96%) to the tomato-infecting PSTVd isolate in the United States (JX280944) suggests that PSTVd from the Dominican Republic was likely introduced from a different source, although the exact source that resulted in the current disease outbreak remains unknown. It may be the result of an inadvertent introduction of contaminated tomato seed lots or simply from local wild plants. Further investigation is necessary to determine the likely source and route of introduction of PSTVd identified in the current epidemic. Thus, proper control measures could be recommended for disease management. The detection of this viroid disease outbreak in the Dominican Republic represents further geographic expansion of the viroid disease in tomatoes beyond North America. References: (1). K.-S. Ling and M. Bledsoe. Plant Dis. 93:839, 2009. (2) K.-S. Ling and W. Zhang. Plant Dis. 93:1216, 2009. (3) K.-S. Ling et al. Plant Dis. 93:1075, 2009. (4) A. M. Shamloul et al. Can. J. Plant Pathol. 19:89, 1997.