Ruhi Kamran
Takeda Pharmaceutical Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruhi Kamran.
Bioorganic & Medicinal Chemistry Letters | 2009
Frank Ruebsam; Douglas E. Murphy; Chinh V. Tran; Lian-Sheng Li; Jingjing Zhao; Peter S. Dragovich; Helen M. McGuire; Alan X. Xiang; Zhongxiang Sun; Benjamin K. Ayida; Julie K. Blazel; Sun Hee Kim; Yuefen Zhou; Qing Han; Charles R. Kissinger; Stephen E. Webber; Richard E. Showalter; Amit M. Shah; Mei Tsan; Rupal Patel; Peggy A. Thompson; Laurie A. LeBrun; Huiying J. Hou; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Julia Khandurina; Jennifer Brooks
A novel series of non-nucleoside small molecules containing a tricyclic dihydropyridinone structural motif was identified as potent HCV NS5B polymerase inhibitors. Driven by structure-based design and building on our previous efforts in related series of molecules, we undertook extensive SAR studies, in which we identified a number of metabolically stable and very potent compounds in genotype 1a and 1b replicon assays. This work culminated in the discovery of several inhibitors, which combined potent in vitro antiviral activity against both 1a and 1b genotypes, metabolic stability, good oral bioavailability, and high C(12) (PO)/EC(50) ratios.
Bioorganic & Medicinal Chemistry Letters | 2008
Frank Ruebsam; Stephen E. Webber; Martin T. Tran; Chinh V. Tran; Douglas E. Murphy; Jingjing Zhao; Peter S. Dragovich; Sun Hee Kim; Lian-Sheng Li; Yuefen Zhou; Qing Han; Charles R. Kissinger; Richard E. Showalter; Matthew Lardy; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Leo Kirkovsky
Pyrrolo[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Structure-based design led to the discovery of compound 3 k, which displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; EC(50) (1b)=12 nM) as well as good stability towards human liver microsomes (HLM t(1/2)>60 min).
Bioorganic & Medicinal Chemistry Letters | 2008
Lian-Sheng Li; Yuefen Zhou; Douglas E. Murphy; Jingjing Zhao; Peter S. Dragovich; Thomas M. Bertolini; Zhongxiang Sun; Benjamin K. Ayida; Chinh V. Tran; Frank Ruebsam; Stephen E. Webber; Amit M. Shah; Mei Tsan; Richard E. Showalter; Rupal Patel; Laurie A. LeBrun; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Ruhi Kamran; Jennifer Brooks; Maria V. Sergeeva; Leo Kirkovsky; Qiang Zhao; Charles R. Kissinger
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as inhibitors of genotype 1 HCV NS5B polymerase. Lead optimization led to the discovery of compound 3a, which displayed potent inhibitory activities in biochemical and replicon assays [IC(50) (1b)<10nM; IC(50) (1a)=22 nM; EC(50) (1b)=5nM], good stability toward human liver microsomes (HLM t(1/2)>60 min), and high ratios of liver to plasma concentrations 12h after a single oral administration to rats.
Bioorganic & Medicinal Chemistry Letters | 2009
Frank Ruebsam; Chinh V. Tran; Lian-Sheng Li; Sun Hee Kim; Alan X. Xiang; Yuefen Zhou; Julie K. Blazel; Zhongxiang Sun; Peter S. Dragovich; Jingjing Zhao; Helen M. McGuire; Douglas E. Murphy; Martin T. Tran; David Archer Ellis; Alberto Gobbi; Richard E. Showalter; Stephen E. Webber; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Huiying J. Hou; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Leo Kirkovsky
5,6-Dihydro-1H-pyridin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4ad displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b)<10nM; IC(50) (1a)<25nM, EC(50) (1b)=16nM), good in vitro DMPK properties, as well as moderate oral bioavailability in monkeys (F=24%).
Bioorganic & Medicinal Chemistry Letters | 2008
Maria V. Sergeeva; Yuefen Zhou; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Ellen Okamoto; Leo Kirkovsky; Ruhi Kamran; Laurie A. LeBrun; Mei Tsan; Rupal Patel; Amit M. Shah; Matthew Lardy; Alberto Gobbi; Lian-Sheng Li; Jingjing Zhao; Thomas M. Bertolini; Zhongxiang Sun; Douglas E. Murphy; Stephen E. Webber; Peter S. Dragovich
5-Hydroxy-3(2H)-pyridazinone derivatives were investigated as potent inhibitors of genotype 1 HCV NS5B polymerase focusing on the optimization of their drug metabolism and pharmacokinetics (DMPK) profiles. This investigation led to the discovery of potent inhibitors with improved DMPK properties.
Bioorganic & Medicinal Chemistry Letters | 2008
David Archer Ellis; Julie K. Blazel; Stephen E. Webber; Chinh V. Tran; Peter S. Dragovich; Zhongxiang Sun; Frank Ruebsam; Helen M. McGuire; Alan X. Xiang; Jingjing Zhao; Lian-Sheng Li; Yuefen Zhou; Qing Han; Charles R. Kissinger; Richard E. Showalter; Matthew Lardy; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Ruhi Kamran; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Maria V. Sergeeva; Leo Kirkovsky
4-(1,1-Dioxo-1,4-dihydro-1lambda(6)-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-one analogs were discovered as a novel class of inhibitors of HCV NS5B polymerase. Structure-based design led to the identification of compound 3a that displayed potent inhibitory activities in biochemical and replicon assays (1b IC(50)<10 nM; 1b EC(50)=1.1 nM) as well as good stability toward human liver microsomes (HLM t(1/2)>60 min).
Bioorganic & Medicinal Chemistry Letters | 2013
Anthony R. Gangloff; Jason W. Brown; Ron de Jong; Douglas R. Dougan; Charles E. Grimshaw; Mark S. Hixon; Andy Jennings; Ruhi Kamran; Andre A. Kiryanov; Shawn O’Connell; Ewan Taylor; Phong H. Vu
Structure based drug design of a series of novel 1,4-benzoxazin-3-one derived PARP-1 inhibitors are described. The synthesis, enzymatic & cellular activities and pharmacodynamic effects are described. Optimized analogs demonstrated inhibition of poly-ADP-ribosylation in SW620 tumor bearing nude mice through 24h following a single dose.
Bioorganic & Medicinal Chemistry Letters | 2008
Frank Ruebsam; Zhongxiang Sun; Benjamin K. Ayida; Stephen E. Webber; Yuefen Zhou; Qiang Zhao; Charles R. Kissinger; Richard E. Showalter; Amit M. Shah; Mei Tsan; Rupal Patel; Laurie A. LeBrun; Ruhi Kamran; Maria V. Sergeeva; Darian M. Bartkowski; Thomas G. Nolan; Daniel A. Norris; Leo Kirkovsky
Hexahydro-pyrrolo- and hexahydro-1H-pyrido[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4c displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b) <10 nM; EC(50) (1b)=34 nM) as well as good stability towards human liver microsomes (HLM t(1/2) =59 min).
PLOS ONE | 2016
Charles E. Grimshaw; Andy Jennings; Ruhi Kamran; Hikaru Ueno; Nobuhiro Nishigaki; Takuo Kosaka; Akiyoshi Tani; Hiroki Sano; Yoshinobu Kinugawa; Emiko Koumura; Lihong Shi; Koji Takeuchi
Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4- and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Taken together, potent dipeptidyl peptidase inhibition may partially contribute to sustained efficacy of trelagliptin.
Bioorganic & Medicinal Chemistry Letters | 2017
Mark Sabat; Haixia Wang; Nick Scorah; J. David Lawson; Joy Atienza; Ruhi Kamran; Mark S. Hixon; Douglas R. Dougan
A series of potent ALK5 inhibitors were designed using a SBDD approach and subsequently optimized to improve drug likeness. Starting with a 4-substituted quinoline screening hit, SAR was conducted using a ALK5 binding model to understand the binding site and optimize activity. The resulting inhibitors displayed excellent potency but were limited by high in vitro clearance in rat and human microsomes. Using a scaffold morphing strategy, these analogs were transformed into a related pyrazolo[4,3-b]pyridine series with improved ADME properties.