Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rui M. Curado da Silva is active.

Publication


Featured researches published by Rui M. Curado da Silva.


Experimental Astronomy | 2013

XIPE: the X-ray imaging polarimetry explorer

Paolo Soffitta; X. Barcons; R. Bellazzini; Joao Braga; Enrico Costa; George W. Fraser; Szymon Gburek; J. Huovelin; Giorgio Matt; M. Pearce; Juri Poutanen; V. Reglero; A. Santangelo; R. Sunyaev; Gianpiero Tagliaferri; Martin C. Weisskopf; Roberto Aloisio; E. Amato; Primo Attinà; Magnus Axelsson; L. Baldini; S. Basso; Stefano Bianchi; Pasquale Blasi; J. Bregeon; Alessandro Brez; N. Bucciantini; L. Burderi; Vadim Burwitz; P. Casella

Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.


Journal of Instrumentation | 2013

TOFPET ASIC for PET applications

M D Rolo; R Bugalho; Fernando M. Gonçalves; G. Mazza; A. Rivetti; J.C. Silva; Rui M. Curado da Silva; João Varela

A 64-channel ASIC for Time-of-Flight Positron Emission Tomography (TOF PET) imaging has been designed and simulated. The circuit is optimized for the readout of signals pro- duced by the scintillation of a L(Y)SO crystal optically coupled to a silicon photomultiplier (SiPM). Developed in the framework of the EndoTOFPET-US collaboration (1), the ASIC is integrated in the external PET plate and performs timing, digitization and data transmission for 511 keV and lower-energy events due to Compton scattering. Multi-event buffering capability allows event rates up to 100 kHz per channel. The channel cell includes a low input impedance low-noise current conveyor and two trans-impedance amplifier branches separately optimized for energy and time resolution. Two voltage mode discriminators generate respectively a fast trigger for accurate timing and a signal for time-over-threshold calcu- lation, used for charge measurement. The digitization of these signals is done by two low-power TDCs, providing coarse and fine time stamps that are saved into a local register and later managed by a global controller, which builds-up the 40-bit event data and runs the interface with the data acquisition back-end. Running at 160 MHz the chip yields a 50 ps time binning and dissipates u 7 mW per channel (simulated for 40 kHz event rate p/channel) for high capacitance photodetectors (9 mm 2 active area Silicon Photomultiplier with 320 pF terminal capacitance). The minimum SNR of 23.5 dB expected with this capacitance should allow triggering on the first photoelectron to achieve the envisaged timing performance for a TOF-PET system.


Experimental Astronomy | 2017

The e-ASTROGAM mission

A. De Angelis; V. Tatischeff; U. Oberlack; I. Grenier; L. Hanlon; Roland Walter; A. Argan; P. von Ballmoos; A. Bulgarelli; I. Donnarumma; Margarida Hernanz; Irfan Kuvvetli; M. Pearce; Andrzej A. Zdziarski; A. Aboudan; M. Ajello; G. Ambrosi; D. Bernard; E. Bernardini; V. Bonvicini; A. Brogna; M. Branchesi; Carl Budtz-Jørgensen; A. Bykov; R. Campana; M. Cardillo; Paolo S. Coppi; D. de Martino; R. Diehl; M. Doro

Abstracte-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.


nuclear science symposium and medical imaging conference | 1995

The optical coupling of analog signals

J.B. Simoes; Rui M. Curado da Silva; António Miguel Morgado; Carlos Correia

An opto-coupling circuit based on the Siemens IL300 linear optocoupler and the methods to assess its static and dynamic performances are presented. It is shown that IL300, due to its built-in linearizing feedback photodiode, makes it possible to build coupling schemes that associate good linearity with the inherent properties of optical devices, as true galvanic isolation, high isolation voltage and transmission down to DC. The integral linearity, 0.029%, obtained on the coupling of typical nuclear spectroscopy pulses makes us believe that traditional capacitive coupling used in nuclear spectroscopy circuits can be replaced by optical coupling in the near future.


Experimental Astronomy | 2005

Polarisation measurements with a CdTe pixel array detector for Laue hard X-ray focusing telescopes

E. Caroli; Rui M. Curado da Silva; Alessandro Pisa; John B. Stephen; Filippo Frontera; Matilde T. D. Castanheira; Stefano Del Sordo

Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60–600keV. The high segmentation of this type of detector (1–2mm pixel size) and the good energy resolution (a few keV FWHM at 500keV) will allow high sensitivity polarisation measurements (a few % for a 10mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polarisation through the use of Monte Carlo simulations (based on the GEANT 4 toolkit) for on and off-axis sources with power law emission spectra using the point spread function of a Laue lens in a feasible configuration.


Experimental Astronomy | 2005

A focal plane detector design for a wide-band Laue-lens telescope

E. Caroli; N. Auricchio; L. Amati; Yuriy Bezsmolnyy; C. Budtz-Jørgensen; Rui M. Curado da Silva; Filippo Frontera; Alessandro Pisa; Stefano Del Sordo; John B. Stephen; G. Ventura

AbstractThe energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.


Particulate Science and Technology | 2012

Imaging Particulate Two-Phase Flow in Liquid Suspensions with Electric Impedance Tomography

Pedro M. Faia; Rui M. Curado da Silva; M. G. Rasteiro; F. A. P. Garcia; António Ferreira; M. J. Santos; Jaime B. Santos; A. P. Coimbra

Different approaches have been followed to model the hydraulic transport of particles, ranging from pure empirical correlations to general models based on fundamental principles. However, these models suffer from uncertainties associated with the parameters in the constitutive equations and scarcity of experimental data in the literature. Nonintrusive techniques such as electric impedance tomography (EIT) can be used to circumvent the difficulties associated with sampling techniques. EIT is an imaging technique for the phase distribution in a two-phase flow field, allowing reconstructing the resistivity/conductivity distribution gradients from electrical data in a medium subjected to arbitrary excitations. Our best efforts were concentrated on the development of a new EIT system that is analogue based, portable, low-cost, and capable of providing high-quality sharp images when used to characterize the flow of particle suspensions. A voltage source was used, rather than a more complex and costly current source, since it provided the EIT system with a more precise and flexible current output. The data acquisition system consists of 16 electrodes equally spaced in the boundary of a tube and a custom dedicated electronic apparatus. The software supplies results in the form of two-dimensional reconstructed images that allow mapping the phase distribution inside the tube.


IEEE Transactions on Nuclear Science | 2000

Compact high voltage and optocoupled electronics for gas proportional scintillation counters

Rui M. Curado da Silva; C.A.N. Conde

Compact (less than 2 dm/sup 3/), low weight (less than 1 kg) and low power (less than 5 W) electronic circuits for large window area (20 cm/sup 2/) Gas Proportional Scintillation Counters (GPSCs) with ellipsoidal grid have been developed for the detection of solar X-rays in balloon borne experiments. The electronics consist of amplification stages and modular power supplies. It includes a 6 kV detector supply, that for the sake of compactness and power saving has a relatively high ripple (/spl plusmn/2 V) that does not affect the performance of system, since the pulses are optically coupled to ground. Details of the circuits are given together with the control and data acquisition interface electronics. X-ray spectra demonstrating the performance of the GPSC and associated electronics are presented.


Proceedings of SPIE | 2010

Development of a 3D CZT detector prototype for Laue Lens telescope

E. Caroli; N. Auricchio; Stefano Del Sordo; L. Abbene; C. Budtz-Jørgensen; Fabio Casini; Rui M. Curado da Silva; Irfan Kuvvetlli; L. Milano; L. Natalucci; E. Quadrini; John B. Stephen; P. Ubertini; Massimiliano Zanichelli; Andrea Zappettini

We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coordinate. The 3D prototype will be made by packing 8 linear modules, each composed by one basic sensitive unit, bonded on a ceramic layer. The linear modules readout is provided by a custom front end electronics implementing a set of three RENA-3 for a total of 128 channels. The front-end electronics and the operating logics (in particular coincidence logics for polarisation measurements) are handled by a versatile and modular multi-parametric back end electronics developed using FPGA technology.


Journal of Instrumentation | 2017

TOFFEE: a full custom amplifier-comparator chip for timing applications with silicon detectors

F. Cenna; Nicolo Cartiglia; A. Di Francesco; J. Olave; M. Da Rocha Rolo; Angelo Rivetti; J.C. Silva; Rui M. Curado da Silva; J. Varela

We report on the design of a full custom amplifier-comparator readout chip for silicon detectors with internal gain designed for precise timing applications. The ASIC has been developed in UMC 110 nm CMOS technology and is aimed to fulfill the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) time resolution requirements (~ 30 ps per detector plane). It features LVDS outputs and the signal dynamic range matches the requirements of the High Precision TDC (HPTDC) system. The preliminary measurements results with a test board are included.

Collaboration


Dive into the Rui M. Curado da Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Varela

University of the Algarve

View shared research outputs
Researchain Logo
Decentralizing Knowledge