Rui Quartau
University of Lisbon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rui Quartau.
Geochemistry Geophysics Geosystems | 2008
Neil C. Mitchell; Christoph Beier; Paul L. Rosin; Rui Quartau; Fernando Tempera
Bathymetry data collected with a multibeam echo sounder around Pico Island, Azores (Portugal), reveal a remarkable series of lava flows on the islands shelf with a variety of pristine structures that suggest how lava behaves on entering water. Many flows are dendritic in plan view, some with channels and tumuli. Dendritic geometries are interpreted to arise from flow fronts repeatedly arrested by enhanced cooling and magma pressure subsequently causing new breakouts. Cascades of elongated flow fingers also occur, with individual fingers of comparable diameters to the largest known megapillows. Some flows have wide transverse clefts, in cases separating flows into segments, which are interpreted as caused by their upper surfaces having solidified, while their still-fluid cores allowed the surfaces to extend. A number of flows moved onto the shelf as large bodies, stopped, and then sourced smaller lobes forming the dendritic patterns. This two-stage evolution and the tumuli (which lie on a low gradient immediately below a steep nearshore gradient) suggest that, after initial emplacement and development of a crust by cooling, some flows pressurized. Once movements ceased and viscous stresses dissipated, magma static pressure developed from the weight of flow interiors passing over cliffs and nearshore gradients. One group of flows traverses the islands submarine slope, so direct supply of lava to the slopes is possible, although volumetrically how important it is to the islands internal composition is difficult to tell from these data. On the basis of observed strong surf erosion of historical flows, these delicate structures probably could not have survived passage through a moving sea level unmodified by erosion so they are unlikely to be pre-Holocene subaerial flows. They are interpreted to have formed in the Holocene from flows penetrating sea level or possibly some from nearshore tube openings or vents. Such flows and abundant clastic deposits are ephemeral features that become remobilized by surf during times of lower sea level. The shelves of active volcanic islands are therefore active geologically and are far from being simple products of erosional truncation as was once envisaged.
Geochemistry Geophysics Geosystems | 2014
Rui Quartau; Ana Hipólito; C. Romagnoli; Daniele Casalbore; José Madeira; Fernando Tempera; C. Roque; Francesco Latino Chiocci
Shelves from volcanic ocean islands result from the competition between two main processes, wave erosion that forms and enlarges them and volcanic progradation that reduces their dimension. In places where erosion dominates over volcanism, shelf width can be used as a proxy for the relative age of the subaerial volcanic edifices and reconstruction of their extents prior to erosion can be achieved. In this study, new multibeam bathymetry and high-resolution seismic reflection profiles are exploited to characterize the morphology of the insular shelves adjacent to each volcanic edifice of Terceira Island in order to improve the understanding of its evolution. Subaerial morphological and geological/stratigraphic data were also used to establish the connection between the onshore and offshore evolution. Shelf width contiguous to each main volcanic edifice is consistent with the known subaerial geological history of the island; most of the older edifices have wider shelves than younger ones. The shelf edge proved to be a very useful indicator in revealing the original extent of each volcanic edifice in plan view. Its depth was also used to reconstruct vertical movements, showing that older edifices like Serra do Cume-Ribeirinha, Guilherme Moniz, and Pico Alto have subsided while more recent ones have not. The morphology of the shelf (namely the absence/presence of fresh lava flow morphologies and several types of erosional, depositional, and tectonic features) integrated with the analysis of the coastline morphology allowed us to better constrain previous geological interpretations of the island evolution.
Science Advances | 2015
Ricardo S. Ramalho; Gisela Winckler; José Madeira; George Helffrich; Ana Hipólito; Rui Quartau; Katherine Adena; Joerg M. Schaefer
Giant tsunami triggered by catastrophic flank collapse of Fogo volcano. Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet, evidence for the generation and impact of collapse-triggered megatsunamis and their high run-ups remains scarce or is highly controversial. Therefore, doubts remain on whether island flank failures truly generate enough volume flux to trigger giant tsunamis, leading to diverging opinions concerning the real hazard potential of such collapses. We show that one of the most prominent oceanic volcanoes on Earth—Fogo, in the Cape Verde Islands—catastrophically collapsed and triggered a megatsunami with devastating effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic 3He dating of tsunamigenic deposits found on nearby Santiago Island, which attest to the impact of this giant tsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo’s flank failure involved at least one fast and voluminous event that led to a giant tsunami, in contrast to what has been suggested before. Our observations therefore further demonstrate that flank collapses may indeed catastrophically happen and are capable of triggering tsunamis of enormous height and energy, adding to their hazard potential.
Geological Society of America Bulletin | 2017
Ricardo S. Ramalho; George Helffrich; J. Madeira; Michael A. Cosca; Christine Thomas; Rui Quartau; Ana Hipólito; Alessio Rovere; Paul J. Hearty; Sérgio P. Ávila
The growth and decay of ocean-island volcanoes are intrinsically linked to vertical movements. While the causes for subsidence are better understood, uplift mechanisms remain enigmatic. Santa Maria Island in the Azores Archipelago is an ocean-island volcano resting on top of young lithosphere, barely 480 km away from the Mid-Atlantic Ridge. Like most other Azorean islands, Santa Maria should be experiencing subsidence. Yet, several features indicate an uplift trend instead. In this paper, we reconstruct the evolutionary history of Santa Maria with respect to the timing and magnitude of its vertical movements, using detailed field work and 40Ar/39Ar geochronology. Our investigations revealed a complex evolutionary history spanning ∼6 m.y., with subsidence up to ca. 3.5 Ma followed by uplift extending to the present day. The fact that an island located in young lithosphere experienced a pronounced uplift trend is remarkable and raises important questions concerning possible uplift mechanisms. Localized uplift in response to the tectonic regime affecting the southeastern tip of the Azores Plateau is unlikely, since the area is under transtension. Our analysis shows that the only viable mechanism able to explain the uplift is crustal thickening by basal intrusions, suggesting that intrusive processes play a significant role even on islands standing on young lithosphere, such as in the Azores.
Geochemistry Geophysics Geosystems | 2015
Rui Quartau; J. Madeira; Neil C. Mitchell; Fernando Tempera; P. F. Silva; F. Brandão
Shelves surrounding reefless volcanic ocean islands are formed by surf erosion of their slopes during changing sea levels. Posterosional lava flows, if abundant, can cross the coastal cliffs and fill partially or completely the accommodation space left by erosion. In this study, multibeam bathymetry, high-resolution seismic reflection profiles, and sediment samples are used to characterize the morphology of the insular shelves adjacent to Pico Island. The data show offshore fresh lava flow morphologies, as well as an irregular basement beneath shelf sedimentary bodies and reduced shelf width adjacent to older volcanic edifices in Pico. These observations suggest that these shelves have been significantly filled by volcanic progradation and can thus be classified as “rejuvenated.” Despite the general volcanic infilling of the shelves around Pico, most of their edges are below the depth of the Last Glacial Maximum, revealing that at least parts of the island have subsided after the shelves formed by surf erosion. Prograding lava deltas reached the shelf edge in some areas triggering small slope failures, locally decreasing the shelf width and depth of their edges. These areas can represent a significant risk for the local population; hence, their identification can be useful for hazard assessment and contribute to wiser land use planning. Shelf and subaerial geomorphology, magnetic anomalies and crustal structure data of the two islands were also interpreted to reconstruct the long-term combined onshore and offshore evolution of the Faial-Pico ridge. The subaerial emergence of this ridge is apparently older than previously thought, i.e., before ∼850 ka.
Bulletin of Volcanology | 2015
Daniele Casalbore; C. Romagnoli; Adriano Pimentel; Rui Quartau; David Casas; Gemma Ercilla; Ana Hipólito; Andrea Sposato; Francesco Latino Chiocci
Terceira Island, in the Azores Archipelago, lies at the intersection of four submarine volcanic ridges. New high-resolution bathymetric and seismic reflection data have been used to analyze the main volcanic, tectonic and mass-wasting features of the island offshore. Volcanic features such as linear volcanic centers, and pointy and flat-topped cones are mainly concentrated on the narrow western and north-western ridges, characterized by an overall rugged morphology. Fault scarps dominate mainly the broad eastern and south-eastern ridges, which are characterized by an overall smooth and terrace-like morphology. On the eastern ridge, faults form a series of horsts and grabens related to the onshore Lajes Graben. The strikes of the fault scarps, linear volcanic centers and alignment of volcanic cones on the ridges reveal two main structural trends, WNW–ESE and NNW–SSE, consistent with the main tectonic structures observed on the Azores Plateau. In contrast, a large variability of strike was observed in inter-ridge areas, reflecting the relative importance of regional and local stresses in producing these structures. Mass-wasting features are subordinate and mostly represented by hundred meter-wide scars that indent the edge of the insular shelf surrounding the island, apart from two large, deeper scars identified on the southern steep flank of the western ridge. Finally, the remarkable morpho-structural differences between the western and eastern ridges are discussed in the framework of the evolution of the Terceira volcanic edifice and hypothesized to reflect successive stages of ridge evolution.
Journal of Maps | 2013
Francesco Latino Chiocci; C. Romagnoli; Daniele Casalbore; Andrea Sposato; Eleonora Martorelli; B. Alonso; David Casas; Aida Maria Conte; L. Di Bella; Gemma Ercilla; F. Estrada; F. Falese; M. Farran; V. Forleo; Virgilio Frezza; Ana Hipólito; A. Lebani; F. Maisto; J. Pacheco; A. Pimentel; Rui Quartau; C. Roque; I. Sampaio; P.C. Santoro; Fernando Tempera
High-resolution morpho-bathymetric data at 1:200,000 scale obtained during the FAIVI cruise (2011) and the resulting geomorphologic map of the Terceira island offshore area (central Azores, Portugal) are presented for the first time. The uneven morphology around Terceira is primarily related to volcanic features, such as linear and cone-shaped eruptive centres and lava flows. Such features are mostly concentrated on volcanic ridges and are aligned along preferential axes, suggesting a strong interaction between tectonics and volcanic processes. The occurrence of active tectonics is also demonstrated by systems of faults cutting the seafloor to the north, east and south of the island. Mapped erosive-depositional features include an insular shelf located at < 150 m water depth (wd), small landslide headwalls, erosive scarps, channelized features and crescent-shaped bedforms. The presented map may represent the base for a first-order geo-hazard assessment.
Geology | 2013
Neil C. Mitchell; Rui Quartau; José Madeira
We were interested to read the paper by [Hildenbrand et al. (2012)][1] outlining geodetic and geologic evidence for active movement of a giant slump in Pico Island, Azores. Such movement is potentially a concern to local communities, so the issues arising from the paper need addressing. We wish to
Geochemistry Geophysics Geosystems | 2016
Rui Quartau; J. Madeira; Neil C. Mitchell; Fernando Tempera; P. F. Silva; F. Brandão
Shelves surrounding reefless volcanic ocean islands are formed by surf erosion of their slopes during changing sea levels. Posterosional lava flows, if abundant, can cross the coastal cliffs and fill partially or completely the accommodation space left by erosion. In this study, multibeam bathymetry, highresolution seismic reflection profiles, and sediment samples are used to characterize the morphology of the insular shelves adjacent to Pico Island. The data show offshore fresh lava flow morphologies, as well as an irregular basement beneath shelf sedimentary bodies and reduced shelf width adjacent to older volcanic edifices in Pico. These observations suggest that these shelves have been significantly filled by volcanic progradation and can thus be classified as ‘‘rejuvenated.’’ Despite the general volcanic infilling of the shelves around Pico, most of their edges are below the depth of the Last Glacial Maximum, revealing that at least parts of the island have subsided after the shelves formed by surf erosion. Prograding lava deltas reached the shelf edge in some areas triggering small slope failures, locally decreasing the shelf width and depth of their edges. These areas can represent a significant risk for the local population; hence, their identification can be useful for hazard assessment and contribute to wiser land use planning. Shelf and subaerial geomorphology, magnetic anomalies and crustal structure data of the two islands were also interpreted to reconstruct the long-term combined onshore and offshore evolution of the Faial-Pico ridge. The subaerial emergence of this ridge is apparently older than previously thought, i.e., before 850 ka.
Earth-Science Reviews | 2013
Ricardo S. Ramalho; Rui Quartau; Alan S. Trenhaile; Neil C. Mitchell; Colin D. Woodroffe; Sérgio P. Ávila