Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rui-Xin Wu is active.

Publication


Featured researches published by Rui-Xin Wu.


Stem Cell Research & Therapy | 2016

Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial

Fa-Ming Chen; Li-Na Gao; Bei-Min Tian; Xi-Yu Zhang; Yongjie Zhang; Guangying Dong; Hong Lu; Qing Chu; Jie Xu; Yang Yu; Rui-Xin Wu; Yuan Yin; Songtao Shi; Yan Jin

BackgroundPeriodontitis, which progressively destroys tooth-supporting structures, is one of the most widespread infectious diseases and the leading cause of tooth loss in adults. Evidence from preclinical trials and small-scale pilot clinical studies indicates that stem cells derived from periodontal ligament tissues are a promising therapy for the regeneration of lost/damaged periodontal tissue. This study assessed the safety and feasibility of using autologous periodontal ligament stem cells (PDLSCs) as an adjuvant to grafting materials in guided tissue regeneration (GTR) to treat periodontal intrabony defects. Our data provide primary clinical evidence for the efficacy of cell transplantation in regenerative dentistry.MethodsWe conducted a single-center, randomized trial that used autologous PDLSCs in combination with bovine-derived bone mineral materials to treat periodontal intrabony defects. Enrolled patients were randomly assigned to either the Cell group (treatment with GTR and PDLSC sheets in combination with Bio-oss®) or the Control group (treatment with GTR and Bio-oss® without stem cells). During a 12-month follow-up study, we evaluated the frequency and extent of adverse events. For the assessment of treatment efficacy, the primary outcome was based on the magnitude of alveolar bone regeneration following the surgical procedure.ResultsA total of 30 periodontitis patients aged 18 to 65 years (48 testing teeth with periodontal intrabony defects) who satisfied our inclusion and exclusion criteria were enrolled in the study and randomly assigned to the Cell group or the Control group. A total of 21 teeth were treated in the Control group and 20 teeth were treated in the Cell group. All patients received surgery and a clinical evaluation. No clinical safety problems that could be attributed to the investigational PDLSCs were identified. Each group showed a significant increase in the alveolar bone height (decrease in the bone-defect depth) over time (p < 0.001). However, no statistically significant differences were detected between the Cell group and the Control group (p > 0.05).ConclusionsThis study demonstrates that using autologous PDLSCs to treat periodontal intrabony defects is safe and does not produce significant adverse effects. The efficacy of cell-based periodontal therapy requires further validation by multicenter, randomized controlled studies with an increased sample size.Trial RegistrationNCT01357785 Date registered: 18 May 2011.


Acta Biomaterialia | 2015

Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets

Rui-Xin Wu; Chun-Sheng Bi; Yang Yu; Lin-Lin Zhang; Fa-Ming Chen

In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy.


Advanced Biosystems | 2017

Engineering a Cell Home for Stem Cell Homing and Accommodation

Rui-Xin Wu; Yuan Yin; Xiao-Tao He; Xuan Li; Fa-Ming Chen

Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo‐expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the “cell home” cell‐friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell–ECM and cell–cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material‐guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Platelet lysate supports the in vitro expansion of human periodontal ligament stem cells for cytotherapeutic use

Rui-Xin Wu; Yang Yu; Yuan Yin; Xi-Yu Zhang; Li-Na Gao; Fa-Ming Chen

Human platelet lysate (PL) produced under optimal conditions of standardization and safety has been increasingly suggested as the future ‘gold standard’ supplement to replace fetal bovine serum (FBS) for the ex vivo propagation of mesenchymal stem cells for translational medicine and cell therapy applications. However, the multifaceted effects of PL on tissue‐specific stem cells remain largely unexplored. In the present study, we investigated the stem cell behaviours of human periodontal ligament stem cells (PDLSCs) in media with or without PL. Our data indicate that human PL, either as an adjuvant for culture media or as a substitute for FBS, supports the proliferation and expansion of human PDLSCs derived from either ‘young’ or ‘old’ donors to the same extent as FBS, without interfering with their immunomodulatory capacities. Although PL appears to inhibit the in vitro differentiation of ‘young’ or ‘old’ PDLSCs, their decreased osteogenic potential may be restored to similar or higher levels compared with FBS‐expanded cells. PL‐ and FBS‐expanded PDLSCs exhibited a similar potential to form mineralized nodules and expressed similar levels of osteogenic genes. Our data indicate that large clinically relevant quantities of PDLSCs may be yielded by the use of human PL; however, further analysis of its precise composition and function will pave the way for determining optimized, defined culture conditions. In addition to the potential increase in patient safety, our findings highlight the need for further research to develop the potential of PL‐expanded PDLSCs for clinical use. Copyright


Cell Adhesion & Migration | 2016

Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli

Yang Yu; Rui-Xin Wu; Li-Na Gao; Yu Xia; Hao-Ning Tang; Fa-Ming Chen

ABSTRACT Directing cell trafficking toward a target site of interest is critical for advancing stem cell therapy in clinical theranostic applications. In this study, we investigated the effects of inflammatory and/or hypoxic stimuli on the migration of bone marrow mesenchymal stem cells (BMMSCs) during in vitro culture and after in vivo implantation. Using tablet scratch experiments and observations from a transwell system, we found that both inflammatory and hypoxic stimuli significantly enhanced cell migration. However, the combination of inflammatory and hypoxic stimuli did not result in a synergistic effect. The presence of stromal cell-derived factor-1 (SDF-1) significantly enhanced cell migration irrespective of the incubation conditions, and these positive effects could be blocked by treatment with AMD3100. Based on a time course experiment, we found that preconditioning cells with either inflammatory or hypoxic stimuli for 24 h or with both stimuli for 12 h led to high levels of chemokine receptor type 4 (CXCR4) expression. In vivo studies further demonstrated that pretreatment of BMMSCs with inflammatory and/or hypoxic stimuli resulted in an increased number of systemically injected cells migrating toward skin injuries, and local SDF-1 administration significantly increased cell migration. These findings suggest that in vitro control of either inflammatory or hypoxic stimuli has significant potential to enhance SDF-1-directed BMMSC migration via the upregulation of CXCR4 expression. Although combining the stimuli did not necessarily lead to a synergistic effect, the potential to reduce the dose and time required for cell preconditioning indicates that combinations of various strategies warrant further exploration.


Stem Cell Research & Therapy | 2017

Influences of age-related changes in mesenchymal stem cells on macrophages during in-vitro culture

Yuan Yin; Rui-Xin Wu; Xiao-Tao He; Xin-Yue Xu; Jia Wang; Fa-Ming Chen

BackgroundMesenchymal stem cells (MSCs) have been widely used in cytotherapy and tissue engineering due to their immunosuppressive ability and regenerative potential. Recently, the immunomodulatory influence of MSCs has been gaining increasing attention because their functional roles in modulating immune responses likely have high clinical significance.MethodsIn this study, we investigated the influence of MSCs on macrophages (Mφs) in in-vitro cell culture systems. Given evidence that aged MSCs are functionally compromised, bone marrow-derived MSCs (BMSCs) isolated from both young and aged mice (YMSCs and AMSCs) were evaluated and contrasted.ResultsWe found that YMSCs exhibited greater proliferative and osteo-differentiation potential compared to AMSCs. When cocultured with RAW264.7 cells (an Mφ cell line), both YMSCs and AMSCs coaxed polarization of Mφs toward an M2 phenotype and induced secretion of anti-inflammatory and immunomodulatory cytokines. Compared to AMSCs, YMSCs exhibited a more potent immunomodulatory effect. While Mφs cocultured with either YMSCs or AMSCs displayed similar phagocytic ability, AMSC coculture was found to enhance Mφ migration in Transwell systems. When BMSCs were prestimulated with interferon gamma before coculture with RAW264.7 cells, their regulatory effects on Mφs appeared to be modified. Here, compared to stimulated AMSCs, stimulated YMSCs also exhibited enhanced cellular influence on cocultured RAW264.7 cells.ConclusionsOur data suggest that BMSCs exert an age-related regulatory effect on Mφs with respect to their phenotype and functions but an optimized stimulation to enhance MSC immunomodulation is in need of further investigation.


Journal of Dental Research | 2017

Leveraging Stem Cell Homing for Therapeutic Regeneration

Yuan Yin; Xuan Li; Xiao-Tao He; Rui-Xin Wu; Hai-Hua Sun; Fa-Ming Chen

Resident stem cell pools in many tissues/organs are responsible not only for tissue maintenance during physiologic turnover but also for the process of wound repair following injury. With inspiration from stem cell trafficking within the body under physiologic and pathologic conditions, recent advances have been made toward inducing stem cell mobilization and directing patients’ own cells to sites of interest for treating a broad spectrum of diseases. An evolving body of work corroborates that delivering guidance cues can mobilize stem cells from the bone marrow and drive these cells toward a specific region. In addition, the transplantation of cell-friendly biomaterials incorporating certain biomolecules has led to the regeneration of lost/damaged tissue without the need for delivering cellular materials manipulated ex vivo. Recently, cell homing has resulted in remarkable biological discoveries in the laboratory as well as great curative successes in preclinical scenarios. Here, we review the biological evidence underlying in vivo cell mobilization and homing with the aim of leveraging endogenous reparative cells for therapeutic applications. Considering both the promise and the obstacles of this approach, we discuss how matrix components of the in vivo milieu can be modified to promote the native regenerative process and inspire future tissue-engineering design.


Cell and Tissue Research | 2016

Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies

Yang Yu; Chun-Sheng Bi; Rui-Xin Wu; Yuan Yin; Xi-Yu Zhang; Ping-Heng Lan; Fa-Ming Chen

In this study, we extensively screened the in vitro and in vivo effects of PDLSCs following short-term inflammatory and/or hypoxic pretreatments. We found that the 24-h hypoxic pretreatment of PDLSCs significantly enhanced cell migration and improved cell surface CXCR4 expression. In addition, hypoxia-pretreated PDLSCs exhibited improved cell colony formation and proliferation. Cells that were dually stimulated also formed more colonies compared to untreated cells but their proliferation did not increase. Importantly, the hypoxic pretreatment of PDLSCs enhanced cell differentiation as determined by elevated RUNX-2 and ALP protein expression. In this context, the inflammatory stimulus impaired cell OCN protein expression, while dual stimuli led to decreased RUNX-2 and OCN mRNA levels. Although preconditioning PDLSCs with inflammatory and/or hypoxic pretreatments resulted in no differences in the production of matrix proteins, hypoxic pretreatment led to the generation of thicker cell sheets; the inflammatory stimulus weakened the ability of cells to form sheets. All the resultant cell sheets exhibited clear bone regeneration following ectopic transplantation as well as in periodontal defect models; the amount of new bone formed by hypoxia-preconditioned cells was significantly greater than that formed by inflammatory stimulus- or dual-stimuli-treated cells or by nonpreconditioned cells. The regeneration of new cementum and periodontal ligaments was only identified in the hypoxia-stimulus and no-stimulus cell groups. Our findings suggest that PDLSCs that undergo short-term hypoxic pretreatment show improved cellular behavior in vitro and enhanced regenerative potential in vivo. The preconditioning of PDLSCs via combined treatments or an inflammatory stimulus requires further investigation.


Cell Proliferation | 2017

Hypoxia and low‐dose inflammatory stimulus synergistically enhance bone marrow mesenchymal stem cell migration

Yang Yu; Yuan Yin; Rui-Xin Wu; Xiao-Tao He; Xi-Yu Zhang; Fa-Ming Chen

Cell migration is necessary for numerous physiological cell processes. Although either inflammatory or hypoxic stimuli of certain dose and duration have positive influence on cell migration, their combination has not been shown to result in a synergistic effect.


Acta Biomaterialia | 2018

Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions

Xiao-Tao He; Rui-Xin Wu; Xin-Yue Xu; Jia Wang; Yuan Yin; Fa-Ming Chen

Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. STATEMENT OF SIGNIFICANCE The substrate stiffness of a scaffold plays critical roles in modulating both reparative cells, such as mesenchymal stem cells (MSCs), and immune cells, such as macrophages (Mφs). Although the influences of material stiffness on either Mφs or MSCs, have been extensively described, how the two cell types respond to matrix cues to dynamically affect each other in a three-dimensional (3D) biosystem remains largely unknown. Here, we report our findings that, in a platform wherein Mφs and bone marrow-derived MSCs coexist, matrix stiffness can influence stem cell fate through both direct matrix-associated regulation and indirect Mφ-based modulation. Our data support future studies of the MSC-Mφ-matrix interplay in the 3D context to optimize matrix parameters for the development of the next biomaterial.

Collaboration


Dive into the Rui-Xin Wu's collaboration.

Top Co-Authors

Avatar

Fa-Ming Chen

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuan Yin

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Tao He

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yang Yu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Bei-Min Tian

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Li-Na Gao

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xi-Yu Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xin-Yue Xu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Xuan Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun-Sheng Bi

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge