Ruibao Ren
Brandeis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruibao Ren.
Nature Reviews Cancer | 2005
Ruibao Ren
Imatinib, a potent inhibitor of the oncogenic tyrosine kinase BCR–ABL, has shown remarkable clinical activity in patients with chronic myelogenous leukaemia (CML). However, this drug does not completely eradicate BCR–ABL-expressing cells from the body, and resistance to imatinib emerges. Although BCR–ABL remains an attractive therapeutic target, it is important to identify other components involved in CML pathogenesis to overcome this resistance. What have clinical trials of imatinib and studies using mouse models for BCR–ABL leukaemogenesis taught us about the functions of BCR–ABL beyond its kinase activity, and how these functions contribute to CML pathogenesis?
Molecular and Cellular Biology | 2000
Sheryl X. Hao; Ruibao Ren
ABSTRACT Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder resulting from the neoplastic transformation of a hematopoietic stem cell. The majority of cases of CML are associated with the (9;22) chromosome translocation that generates thebcr-abl chimeric gene. Alpha interferon (IFN-α) treatment induces hematological remission and prolongs life in 75% of CML patients in the chronic phase. It has been shown that mice deficient in interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family, manifest a CML-like syndrome. We have shown that expression of Bcr-Abl in bone marrow (BM) cells from 5-fluorouracil (5-FU)-treated mice by retroviral transduction efficiently induces a myeloproliferative disease in mice resembling human CML. To directly test whether icsbp can function as a tumor suppressor gene, we examined the effect of ICSBP on Bcr-Abl-induced CML-like disease using this murine model for CML. We found that expression of the ICSBP protein was significantly decreased in Bcr-Abl-induced CML-like disease. Forced coexpression of ICSBP inhibited the Bcr-Abl-induced colony formation of BM cells from 5-FU-treated mice in vitro and Bcr-Abl-induced CML-like disease in vivo. Interestingly, coexpression of ICSBP and Bcr-Abl induced a transient B-lymphoproliferative disorder in the murine model of Bcr-Abl-induced CML-like disease. Overexpression of ICSBP consistently promotes rather than inhibits Bcr-Abl-induced B lymphoproliferation in a murine model where BM cells from non-5-FU-treated donors were used, indicating that ICSBP has a specific antitumor activity toward myeloid neoplasms. We also found that overexpression of ICSBP negatively regulated normal hematopoiesis. These data provide direct evidence that ICSBP can act as a tumor suppressor that regulates normal and neoplastic proliferation of hematopoietic cells.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Su-Jiang Zhang; Li-Yuan Ma; Qiu-Hua Huang; Guo Li; Bai-Wei Gu; Xiao-Dong Gao; Jing-Yi Shi; Yue-Ying Wang; Li Gao; Xun Cai; Ruibao Ren; Jiang Zhu; Zhu Chen; Sai-Juan Chen
Acquisition of additional genetic and/or epigenetic abnormalities other than the BCR/ABL fusion gene is believed to cause disease progression in chronic myeloid leukemia (CML) from chronic phase to blast crisis (BC). To gain insights into the underlying mechanisms of progression to BC, we screened DNA samples from CML patients during blast transformation for mutations in a number of transcription factor genes that are critical for myeloid–lymphoid development. In 85 cases of CML blast transformation, we identified two new mutations in the coding region of GATA-2, a negative regulator of hematopoietic stem/progenitor cell differentiation. A L359V substitution within zinc finger domain (ZF) 2 of GATA-2 was found in eight cases with myelomonoblastic features, whereas an in-frame deletion of 6 aa (Δ341–346) spanning the C-terminal border of ZF1 was detected in one patient at myeloid BC with eosinophilia. Further studies indicated that L359V not only increased transactivation activity of GATA-2 but also enhanced its inhibitory effects on the activity of PU.1, a major regulator of myelopoiesis. Consistent with the myelomonoblastic features of CML transformation with the GATA-2 L359V mutant, transduction of the GATA-2 L359V mutant into HL-60 cells or BCR/ABL-harboring murine cells disturbed myelomonocytic differentiation/proliferation in vitro and in vivo, respectively. These data strongly suggest that GATA-2 mutations may play a role in acute myeloid transformation in a subset of CML patients.
Molecular and Cellular Biology | 2001
Xiaowu Zhang; Ramesh Subrahmanyam; Ray Wong; Alec W. Gross; Ruibao Ren
ABSTRACT Bcr-Abl, a fusion protein generated by t(9;22)(q34;q11) translocation, plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). It has been shown that Bcr-Abl contains multiple functional domains and motifs and can disrupt regulation of many signaling pathways and cellular functions. However, the role of specific domains and motifs of Bcr-Abl or of specific signaling pathways in the complex in vivo pathogenesis of CML is not completely known. We have previously shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces a myeloproliferative disorder (MPD) in mice resembling human CML. We have also shown that the Abl kinase activity within Bcr-Abl is essential for Bcr-Abl leukemogenesis, yet activation of the Abl kinase without Bcr sequences is not sufficient to induce MPD in mice. In this study we investigated the role of Bcr sequences within Bcr-Abl in inducing MPD using this murine model for CML. We found that the NH2-terminal coiled-coil (CC) domain was both essential and sufficient, even though not efficient, to activate Abl to induce an MPD in mice. Interestingly, deletion of the Src homology 3 domain complemented the deficiencies of the CC-deleted Bcr-Abl in inducing MPD in mice. We further demonstrated that the Grb2 binding site at Y177 played an important role in efficient induction of MPD. These studies directly demonstrated the important roles of Bcr sequences in induction of MPD by Bcr-Abl.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Yue-Ying Wang; Li-Juan Zhao; Chuan-Feng Wu; Ping Liu; Shi L; Yang Liang; Shu-Min Xiong; Jian-Qing Mi; Zhu Chen; Ruibao Ren; Sai-Juan Chen
The full-length AML1-ETO (AE) fusion gene resulting from t(8;21)(q22;q22) in human acute myeloid leukemia (AML) is not sufficient to induce leukemia in animals, suggesting that additional mutations are required for leukemogenesis. We and others have identified activating mutations of C-KIT in nearly half of patients with t(8;21) AML. To test the hypothesis that activating C-KIT mutations cooperate with AE to cause overt AML, we generated a murine transduction and transplantation model with both mutated C-KIT and AE. To overcome the intracellular transport block of human C-KIT in murine cells, we engineered hybrid C-KIT (HyC-KIT) by fusing the extracellular and transmembrane domains of the murine c-Kit in-frame to the intracellular signaling domain of human C-KIT. We showed that tyrosine kinase domain mutants HyC-KIT N822K and D816V, as well as juxtamembrane mutants HyC-KIT 571+14 and 557-558Del, could transform murine 32D cells to cytokine-independent growth. The protein tyrosine kinase inhibitor dasatinib inhibited the proliferation of 32D cells expressing these C-KIT mutants, with potency in the low nanomolar range. In mice, HyC-KIT N822K induced a myeloproliferative disease, whereas HyC-KIT 571+14 induces both myeloproliferative disease and lymphocytic leukemia. Interestingly, coexpression of AE and HyC-KIT N822K led to fatal AML. Our data have further enriched the two-hit model that abnormalities of both transcription factor and membrane/cytosolic signaling molecule are required in AML pathogenesis. Furthermore, dasatinib prolonged lifespan of mice bearing AE and HyC-KIT N822K-coexpressing leukemic cells and exerted synergic effects while combined with cytarabine, thus providing a potential therapeutic for t(8;21) leukemia.
Oncogene | 2001
Grace M Cuenco; Ruibao Ren
The development of acute myelogenous leukemia (AML), which is characterized by a block of myeloid differentiation, is a multi-step process that involves several genetic abnormalities, but the molecular mechanisms by which these genetic alterations cooperate in leukemogenesis are poorly understood. The human chronic myelogenous leukemia (CML) is a model for multi-step leukemogenesis. BCR-ABL, a constitutively active tyrosine kinase, is a fusion protein generated by the t(9;22)(q34;q11) translocation found in the vast majority of CML patients. BCR-ABL efficiently induces a myeloproliferative disorder (MPD) in mice, but progression to CML blast phase requires additional mutations. The AML1/MDS1/EVI1 (AME) transcription factor fusion protein, is a product of the human t(3;21)(q26;q22) translocation found as a secondary mutation in some cases of CML during the blast phase. We have previously shown that AME can induce an AML in mice but with a greatly extended latency, suggesting a requirement for additional mutations. Here we demonstrate that AME alone does not block myeloid differentiation in vivo during the 4-month pre-leukemia stage, yet co-expression of BCR-ABL and AME in mice can block myeloid differentiation and rapidly induce an AML. Our results suggest that block of myeloid differentiation and induction of AML involves cooperation between mutations that dysregulate protein tyrosine kinase signaling and those that disrupt hematopoietic gene transcription.
Molecular and Cellular Biology | 1999
Alec W. Gross; Xiaowu Zhang; Ruibao Ren
ABSTRACT The bcr-abl oncogene plays a critical role in the pathogenesis of chronic myelogenous leukemia (CML). The fusion of Bcr sequences to Abl constitutively activates the Abl protein tyrosine kinase. We have recently shown that expression of Bcr-Abl in bone marrow cells by retroviral transduction efficiently induces in mice a myeloproliferative disease resembling human CML and that Abl kinase activity is essential for Bcr-Abl to induce a CML-like myeloproliferative disease. However, it is not known if activation of the Abl kinase alone is sufficient to induce a myeloproliferative disease. In this study, we examined the role of the Abl SH3 domain of Bcr-Abl in induction of myeloproliferative disease and tested whether c-Abl activated by SH3 deletion can induce a CML-like disease. We found that Bcr-Abl with an Abl SH3 deletion still induced a CML-like disease in mice. In contrast, c-Abl activated by SH3 deletion induced only lymphoid malignancies in mice and did not stimulate the growth of myeloid colonies from 5-fluorouracil-treated bone marrow cells in vitro. These results indicate that Bcr sequences in Bcr-Abl play additional roles in inducing myeloproliferative disease beyond simply activating the Abl kinase domain and that functions of the Abl SH3 domain are either not required or redundant in Bcr-Abl-induced myeloproliferative disease. The results also suggest that the type of hematological neoplasm induced by an abl oncogene is influenced not only by what type of hematopoietic cells the oncogene is targeted into but also by the intrinsic oncogenic properties of the particular abl oncogene. In addition, we found that ΔSH3 c-Abl induced less activation of Akt and STAT5 than did Bcr-Abl, suggesting that activation of these pathways plays a critical role in inducing a CML-like disease.
Cancer Research | 2007
Chaitali Parikh; Ramesh Subrahmanyam; Ruibao Ren
RAS proteins are small GTPases that play a central role in transducing signals that regulate cell proliferation, survival, and differentiation. The RAS proteins interact with a common set of activators and effectors; however, they associate with different microdomains of the plasma membrane as well as other endomembranes and are capable of generating distinct signal outputs. Mutations that result in constitutive activation of RAS proteins are associated with approximately 30% of all human cancers; however, different RAS oncogenes are preferentially associated with different types of human cancer. In myeloid malignancies, NRAS mutations are more frequent than KRAS mutations, whereas HRAS mutations are rare. The mechanism underlying the different frequencies of RAS isoforms mutated in myeloid leukemia is not known. In this study, we compared the leukemogenic potential of activated NRAS, KRAS, and HRAS in the same bone marrow transduction/transplantation model system. We found that all three RAS oncogenes have the ability to induce myeloid leukemias, yet have distinct leukemogenic strengths and phenotypes. The models established here provide a system for further studying the molecular mechanisms in the pathogenesis of myeloid malignancies and for testing targeted therapies.
Oncogene | 2004
Grace M Cuenco; Ruibao Ren
We have previously shown that BCR/ABL, a fusion protein generated by the t(9;22)(q34;q11) translocation found in the vast majority of chronic myelogenous leukemia (CML), cooperates with AML1/MDS1/EVI1 (AME), a fusion transcription factor generated by a t(3;21)(q26;q22) translocation identified as a secondary mutation in some cases of CML during the blast phase (CML-BC), in the rapid induction of an acute myelogenous leukemia (AML) in mice. In this study, we evaluated the leukemogenic potential of EVI1-, MDS1/EVI1- and AML1-related oncoproteins (AML1Δ, AML1/MDS1). We found that ectopic expression of either EVI1 or MDS1/EVI1 impaired hematopoiesis. However, neither EVI1 nor MDS1/EVI1 was sufficient for inducing AML in mice, although EVI1 did induce some hematologic neoplasia other than AML with a low efficiency. In addition, unlike AME, none of the EVI1- or AML1-related oncoproteins examined were capable of fully cooperating with BCR/ABL in the induction of AML. The results indicate that both the AML1 and EVI1 oncogenic components are required for the leukemogenic potential of AME and for the cooperation of AME and BCR/ABL in the induction of AML.
Cancer Research | 2006
David B. Shackelford; Candia M. Kenific; Agnieszka Blusztajn; Samuel Waxman; Ruibao Ren
Arsenic trioxide (ATO) has been found to be an effective treatment for acute promyelocytic leukemia patients and is being tested for treating other hematologic malignancies. We have previously shown that AML1/MDS1/EVI1 (AME), a fusion gene generated by a t(3;21)(q26;q22) translocation found in patients with chronic myelogenous leukemia during blast phase, myelodysplastic syndrome, or acute myelogenous leukemia (AML), impairs hematopoiesis and eventually induces an AML in mice. Both fusion partners of AME, AML1 and MDS1/EVI1, encode transcription factors and are also targets of a variety of genetic abnormalities in human hematologic malignancies. In addition, aberrant expression of ectopic viral integration site 1 (EVI1) has also been found in solid tumors, such as ovarian and colon cancers. In this study, we examined whether ATO could target AME and related oncoproteins. We found that ATO used at therapeutic levels degrades AME. The ATO treatment induces differentiation and apoptosis in AME leukemic cells in vitro as well as reduces tumor load and increases the survival of mice transplanted with these cells. We further found that ATO targets AME via both myelodysplastic syndrome 1 (MDS1) and EVI1 moieties and degrades EVI1 via the ubiquitin-proteasome pathway and MDS1 in a proteasome-independent manner. Our results suggest that ATO could be used as a part of targeted therapy for AME-, AML1/MDS1-, MDS1/EVI1-, and EVI1-positive human cancers.