Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruijun Tian is active.

Publication


Featured researches published by Ruijun Tian.


Cell | 2012

Soluble FLT1 Binds Lipid Microdomains in Podocytes to Control Cell Morphology and Glomerular Barrier Function

Jing Jin; Karen Sison; Chengjin Li; Ruijun Tian; Monika Wnuk; Hoon-Ki Sung; Marie Jeansson; Cunjie Zhang; Monika Tucholska; Nina Jones; Dontscho Kerjaschki; Masabumi Shibuya; I. George Fantus; Andras Nagy; Hans Gerber; Napoleone Ferrara; Tony Pawson; Susan E. Quaggin

Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.


Journal of the American Society for Mass Spectrometry | 2008

The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis

Liang Zhao; Ren’an Wu; Guanghui Han; Houjiang Zhou; Lianbing Ren; Ruijun Tian; Hanfa Zou

The highly selective capture of phosphopeptides from proteolytic digests is a great challenge for the identification of phosphoproteins by mass spectrometry. In this work, the zirconium phosphonate-modified magnetic Fe3O4/SiO2 core/shell nanoparticles have been synthesized and successfully applied for the selective capture of phosphopeptides from complex tryptic digests of proteins before the analysis of MALDI-TOF mass spectrometry with the desired convenience of sample handling. The ratio of magnetic nanoparticle to protein and the incubation time for capturing phosphopeptides from complex proteolytic digests were investigated, and the optimized nanoparticle-to-protein ratio and incubation time were between 15:1 to 30:1 and 30 min, respectively. The excellent detection limit of 0.5 fmol β-casein has been achieved by MALDI-TOF mass spectrometry with the specific capture of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles. The great specificity of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles to phosphopeptides was demonstrated by the selective capture of phosphopeptides from a complex tryptic digest of the mixture of α-casein and bovine serum albumin at molar ratio of 1 to 100 in MALDI-TOF-MS analysis. An application of the magnetic nanoparticles to selective capture phosphopeptides from a tryptic digest of mouse liver lysate was further carried out by combining with nano-LC-MS/MS and MS/MS/MS analyses, and a total of 194 unique phosphopeptides were successfully identified.


Journal of Chromatography A | 2009

Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis

Ruijun Tian; Lianbing Ren; Huaijun Ma; Xin Li; Lianghai Hu; Mingliang Ye; Ren’an Wu; Zhijian Tian; Zhen Liu; Hanfa Zou

We report the development of a combined strategy for high capacity, comprehensive enrichment of endogenous peptide from complex biological samples at natural pH condition. MCM-41 nanoparticles with highly ordered nanoscale pores (i.e. 4.8nm) and high-surface area (i.e. 751m(2)/g) were synthesized and modified with strong cation-exchange (SCX-MCM-41) and strong anion-exchange (SAX-MCM-41) groups. The modified nanoparticles demonstrated good size-exclusion effect for the adsorption of standard protein lysozyme with molecular weight (MW) of ca. 15kDa; and the peptides with MW lower than this value can be well adsorbed. Step elution of the enriched peptides with five salt concentrations presented that both modified nanoparticles have high capacity and complementarity for peptides enrichment, and the SAX-MCM-41 nanoparticles has obviously high selectivity for acidic peptides with pI (isoelectric point) lower than 4. Large-scale enrichment of endogenous peptides in 2mg mouse liver extract was achieved by further combination of SCX-MCM-41 and SAX-MCM-41 with unmodified MCM-41 nanoparticles. On-line 2D nano-LC/MS/MS was applied to analyze the enriched samples, and 2721 unique peptides were identified in total. Two-dimensional analysis of MW versus pI distribution combined with abundance of the identified peptides demonstrated that the three types of nanoparticles have comprehensive complementarity for peptidome enrichment.


Molecular & Cellular Proteomics | 2011

Rare Cell Proteomic Reactor Applied to Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Quantitative Proteomics Study of Human Embryonic Stem Cell Differentiation

Ruijun Tian; Shuai Wang; Fred Elisma; Li Li; Hu Zhou; Lisheng Wang; Daniel Figeys

The molecular basis governing the differentiation of human embryonic stem cells (hESCs) remains largely unknown. Systems-level analysis by proteomics provides a unique approach to tackle this question. However, the requirement of a large number of cells for proteomics analysis (i.e. 106–107 cells) makes this assay challenging, especially for the study of rare events during hESCs lineage specification. Here, a fully integrated proteomics sample processing and analysis platform, termed rare cell proteomic reactor (RCPR), was developed for large scale quantitative proteomics analysis of hESCs with ∼50,000 cells. hESCs were completely extracted by a defined lysis buffer, and all of the proteomics sample processing procedures, including protein preconcentration, reduction, alkylation, and digestion, were integrated into one single capillary column with a strong cation exchange monolith matrix. Furthermore, on-line two-dimensional LC-MS/MS analysis was performed directly using RCPR as the first dimension strong cation exchange column. 2,281 unique proteins were identified on this system using only 50,000 hESCs. For stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative study, a ready-to-use and chemically defined medium and an in situ differentiation procedure were developed for complete SILAC labeling of hESCs with well characterized self-renewal and differentiation properties. Mesoderm-enriched differentiation was studied by RCPR using 50,000 hESCs, and 1,086 proteins were quantified with a minimum of two peptides per protein. Of these, 56 proteins exhibited significant changes during mesoderm-enriched differentiation, and eight proteins were demonstrated for the first time to be overexpressed during early mesoderm development. This work provides a new platform for the study of rare cells and in particular for further elucidating proteins that govern the mesoderm lineage specification of human pluripotent stem cells.


Analytical Chemistry | 2011

Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying Protein–Protein Interactions

Ruijun Tian; Xuyen Dai Hoa; Jean-Philippe Lambert; John Paul Pezacki; Teodor Veres; Daniel Figeys

Mass spectrometry-based proteomics techniques have been very successful for the identification and study of protein-protein interactions. Typically, immunopurification of protein complexes is conducted, followed by protein separation by gel electrophoresis and in-gel protein digestion, and finally, mass spectrometry is performed to identify the interacting partners. However, the manual processing of the samples is time-consuming and error-prone. Here, we developed a polymer-based microfluidic proteomic reactor aimed at the parallel analysis of minute amounts of protein samples obtained from immunoprecipitation. The design of the proteomic reactor allows for the simultaneous processing of multiple samples on the same devices. Each proteomic reactor on the device consists of SCX beads packed and restricted into a 1 cm microchannel by two integrated pillar frits. The device is fabricated using a combination of low-cost hard cyclic olefin copolymer thermoplastic and elastomeric thermoplastic materials (styrene/(ethylene/butylenes)/styrene) using rapid hot-embossing replication techniques with a polymer-based stamp. Three immunopurified protein samples are simultaneously captured, reduced, alkylated, and digested on the device within 2-3 h instead of the days required for the conventional protein-protein interaction studies. The limit of detection of the microfluidic proteomic reactor was shown to be lower than 2 ng of protein. Furthermore, the application of the microfluidic proteomic reactor was demonstrated for the simultaneous processing of the interactome of the histone variant Htz1 in wild-type yeast and in a swr1Δ yeast strain compared to an untagged control using a novel three-channel microfluidic proteomic reactor.


Science Signaling | 2012

Sequence-Specific Recognition of a PxLPxI/L Motif by an Ankyrin Repeat Tumbler Lock

Chao Xu; Jing Jin; Chuanbing Bian; Robert Lam; Ruijun Tian; Ryan Weist; Linya You; Jianyun Nie; Alexey Bochkarev; Wolfram Tempel; Chris Soon Heng Tan; Gregory A. Wasney; Masoud Vedadi; Gerald Gish; C.H. Arrowsmith; Tony Pawson; Xiang Jiao Yang; Jinrong Min

Phosphorylation of a motif that binds to ankyrin repeat domains switches its binding preference to 14-3-3 proteins. Fitting Protein Keys to Multiple Protein Locks The ankyrin repeat motif is a 33-residue sequence that is important for mediating protein-protein interactions. ANKRA2 contains five such motifs, and it binds to histone deacetylase 4 (HDAC4), among other targets. Through peptide-binding arrays, mutagenesis studies, and x-ray crystallography, Xu et al. showed that the middle three ankyrin repeat domains of ANKRA2 form hydrophobic pockets that accommodate the linear arrangement of specific residues in the binding motif of HDAC4, similar to the way in which the tumblers of a lock accept a key. Phosphorylation of a serine residue within the ANKRA2-binding motif of HDAC4 attenuated the ANKRA2-HDAC4 interaction but enabled HDAC4 to bind to 14-3-3 proteins, which inhibit HDAC activity by sequestering HDACs in the cytoplasm. Proteome-wide screening identified other proteins with similar serine-containing, ankyrin domain–binding motifs, which suggests that phosphorylation acts as a switch that determines the binding preference of this motif in a signal-dependent manner. Ankyrin repeat family A protein 2 (ANKRA2) interacts with the plasma membrane receptor megalin and the class IIa histone deacetylases HDAC4 and HDAC5. We report that the ankyrin repeat domains of ANKRA2 and its close paralog regulatory factor X–associated ankyrin-containing protein (RFXANK) recognize a PxLPxI/L motif found in diverse binding proteins, including HDAC4, HDAC5, HDAC9, megalin, and regulatory factor X, 5 (RFX5). Crystal structures of the ankyrin repeat domain of ANKRA2 in complex with its binding peptides revealed that each of the middle three ankyrin repeats of ANKRA2 recognizes a residue from the PxLPxI/L motif in a tumbler-lock binding mode, with ANKRA2 acting as the lock and the linear binding motif serving as the key. Structural analysis showed that three disease-causing mutations in RFXANK affect residues that are critical for binding to RFX5. These results suggest a fundamental principle of longitudinal recognition of linear sequences by a repeat-type domain. In addition, phosphorylation of serine 350, a residue embedded within the PxLPxI/L motif of HDAC4, impaired the binding of ANKRA2 but generated a high-affinity docking site for 14-3-3 proteins, which may help sequester this HDAC in the cytoplasm. Thus, the binding preference of the PxLPxI/L motif is signal-dependent. Furthermore, proteome-wide screening suggested that a similar phosphorylation-dependent switch may operate in other pathways. Together, our findings uncover a previously uncharacterized sequence- and signal-dependent peptide recognition mode for a repeat-type protein domain.


Proteomics | 2007

Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column.

Xiaogang Jiang; Shun Feng; Ruijun Tian; Guanghui Han; Xinning Jiang; Mingliang Ye; Hanfa Zou

An approach was developed to automate sample introduction for nanoflow LC‐MS/MS (μLC‐MS/MS) analysis using a strong cation exchange (SCX) trap column. The system consisted of a 100 μm id×2 cm SCX trap column and a 75 μm id×12 cm C18 RP analytical column. During the sample loading step, the flow passing through the SCX trap column was directed to waste for loading a large volume of sample at high flow rate. Then the peptides bound on the SCX trap column were eluted onto the RP analytical column by a high salt buffer followed by RP chromatographic separation of the peptides at nanoliter flow rate. It was observed that higher performance of separation could be achieved with the system using SCX trap column than with the system using C18 trap column. The high proteomic coverage using this approach was demonstrated in the analysis of tryptic digest of BSA and yeast cell lysate. In addition, this system was also applied to two‐dimensional separation of tryptic digest of human hepatocellular carcinoma cell line SMMC‐7721 for large scale proteome analysis. This system was fully automated and required minimum changes on current μLC‐MS/MS system. This system represented a promising platform for routine proteome analysis.


Skeletal Muscle | 2012

A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts

James D.R. Knight; Ruijun Tian; Robin E. C. Lee; Fangjun Wang; Ariane Beauvais; Hanfa Zou; Lynn A. Megeney; Anne-Claude Gingras; Tony Pawson; Daniel Figeys; Rashmi Kothary

BackgroundThe p38α mitogen-activated protein kinase (MAPK) is a critical mediator of myoblast differentiation, and does so in part through the phosphorylation and regulation of several transcription factors and chromatin remodelling proteins. However, whether p38α is involved in processes other than gene regulation during myogenesis is currently unknown, and why other p38 isoforms cannot compensate for its loss is unclear.MethodsTo further characterise the involvement of p38α during myoblast differentiation, we developed and applied a simple technique for identifying relevant in vivo kinase substrates and their phosphorylation sites. In addition to identifying substrates for one kinase, the technique can be used in vitro to compare multiple kinases in the same experiment, and we made use of this to study the substrate specificities of the p38α and β isoforms.ResultsApplying the technique to p38α resulted in the identification of seven in vivo phosphorylation sites on six proteins, four of which are cytoplasmic, in lysate derived from differentiating myoblasts. An in vitro comparison with p38β revealed that substrate specificity does not discriminate these two isoforms, but rather that their distinguishing characteristic appears to be cellular localisation.ConclusionOur results suggest p38α has a novel cytoplasmic role during myogenesis and that its unique cellular localisation may be why p38β and other isoforms cannot compensate for its absence. The substrate-finding approach presented here also provides a necessary tool for studying the hundreds of protein kinases that exist and for uncovering the deeper mechanisms of phosphorylation-dependent cell signalling.


Chemical Communications | 2006

Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles

Junming Sun; He Zhang; Ruijun Tian; Ding Ma; Xinhe Bao; Dang Sheng Su; Hanfa Zou

By finely tuning the TEOS/P123 molar ratio of the octane/water/P123/TEOS quadruple emulsion system and by controlling the synthesis conditions, an ultrafine emulsion system was isolated, under the confinement of which, nanoscale silica particles with ordered large mesopores (approximately 13 nm) have been successfully constructed; the obtained mesoporous silica particles have an unusual ultrafast enzyme adsorption speed and the amount of enzyme that can be immobilized is larger than that of conventional mesoporous silica, which has potential applications in the fast separation of biomolecules.


Journal of Proteome Research | 2010

Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.

Houjiang Zhou; Fred Elisma; Nicholas J. Denis; Theodore G. Wright; Ruijun Tian; Hu Zhou; Weimin Hou; Hanfa Zou; Daniel Figeys

Protein phosphorylation is an important post-translational modification involved in the regulation of many cellular processes. Mass spectrometry has been successfully used to identify protein phosphorylation in specific pathways and for global phosphoproteomic analysis. However, phosphoproteomics approaches do not evaluate the subcellular localization of the phosphorylated forms of proteins, which is an important factor for understanding the roles of protein phosphorylation on a global scale. The in-depth mapping of protein phosphorylation at the subcellular level necessitates the development of new methods capable of specifically and efficiently enriching phosphopeptides from highly complex samples. Here, we report a novel microfluidic device called the phosphoproteomic reactor that combines efficient processing of proteins followed by phosphopeptide enrichment by Ti-IMAC. To illustrate the potential of this novel technology, we mapped the phosphoproteins in subcellular organelles of liver cells. Fifteen subcellular fractions from liver cell cultures were processed on the phosphoproteomic reactor in combination with nano-LC-MS/MS analysis. We identified thousands of phosphorylation sites in over 600 phosphoproteins in different organelles using minute amounts of starting material. Overall, this approach provides a new avenue for studying the phosphoproteome of the subcellular organelles.

Collaboration


Dive into the Ruijun Tian's collaboration.

Top Co-Authors

Avatar

Hanfa Zou

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Mingliang Ye

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaogang Jiang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuanhui Xie

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Guanghui Han

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Jiwei Hu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Lianghai Hu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Shun Feng

Dalian Institute of Chemical Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge