Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruile Pan is active.

Publication


Featured researches published by Ruile Pan.


Molecular Pharmaceutics | 2015

Involvement of the Inhibition of Intestinal Glucuronidation in Enhancing the Oral Bioavailability of Resveratrol by Labrasol Containing Nanoemulsions

Jing Zhou; Man Zhou; Fei-Fei Yang; Chun-Yu Liu; Ruile Pan; Qi Chang; Xinmin Liu; Yong-Hong Liao

Nanoemulsions have been developed for the oral delivery of poorly bioavailable phenolic compounds that are sensitive to intestinal glucuronidation. However, little is known about the contribution of UDP-glucuronosyltransferase (UGT) inhibitory excipients in nanoemulsions toward the inhibition of intestinal glucuronidation and the consequent enhanced bioavailability. In this study, Labrasol but not poloxamer 188 (F68) was found to inhibit the glucuronidation of resveratrol (RES), a model phenolic compound, in an inhibition assay with rat microsomes. Subsequently, two nanoemulsions, Lab-N and F68-N, were prepared with similar particle size distribution, zeta potentials, and entrapment efficiency by coemulsifying with Labrasol or F68, respectively. Although Lab-N exhibited inferior or comparable profiles of in vitro release, cellular uptake in Caco-2 cells, and lymphatic transport in rats to F68-N, the in vitro absorption study with everted sacs suggested that Labrasol containing formulations significantly and dose-dependently increased the transport of RES relative to free RES or F68-N by decreasing the amount of permeated metabolite, RES-3-glucuronide (RES-G). The in vivo pharmacokinetic experiments indicated that Lab-N exhibited increments in the maximum plasma concentration and the bioavailability of RES by 1098% and 560%, respectively, and significant decreases in those of RES-G, compared to F68-N. The overall results demonstrated that the improved oral bioavailability of RES by Lab-N was mainly attributable to the inhibition of intestinal glucuronidation by the presence of UGT inhibitory excipient.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

Saikosaponin D acts against corticosterone-induced apoptosis via regulation of mitochondrial GR translocation and a GR-dependent pathway.

Zongyang Li; Yumao Jiang; Yamin Liu; Zhi Guo; Shengnan Shen; Xinmin Liu; Ruile Pan

Saikosaponin D is an agonist of the glucocorticoid receptor (GR), and our preliminary study showed that it possesses neuroprotective effects in corticosterone-treated PC12 cells. However, further proof is required, and the molecular mechanisms of this neuroprotection remain unclear. This study sought to further examine the cytoprotective efficiency and potential mechanisms of action of Saikosaponin D in corticosterone-treated PC12 cells. The cells were treated with 250 μM corticosterone in the absence or presence of Saikosaponin D for 24 h; cell viability was then determined, and Hoechst 33342/propidium iodide (PI) and annexin/PI double staining, and TUNEL staining were performed. Next, mPTP, MMP, [Ca(2+)]i, translocation of the GR to the nucleus and Western blot analyses for caspase-3, caspase-9, cytochrome C, GR, GILZ, SGK-1, NF-Κb (P65), IκB-α, Bad, Akt, Hsp90 and HDAC-6 were investigated. The neuroprotective effects of Saikosaponin D were further confirmed by Hoechst 33342/PI, annexin/PI and TUNEL staining assays. These additional data suggested that Saikosaponin D partially reversed the physiological changes induced by corticosterone by inhibiting the translocation of the GR to the mitochondria, restoring mitochondrial function, down-regulating the expression of pro-apoptotic-related signalling events and up-regulating anti-apoptotic-related signalling events. These findings suggest that SSD exhibited its anti-apoptotic effects via differential regulation of mitochondrial and nuclear GR translocation, partial reversal of mitochondrial dysfunction, inhibition of the mitochondrial apoptotic pathway, and selective activation of the GR-dependent survival pathway.


Journal of Ethnopharmacology | 2015

Neuroprotective effect of water extract of Panax ginseng on corticosterone-induced apoptosis in PC12 cells and its underlying molecule mechanisms

Yumao Jiang; Zongyang Li; Yamin Liu; Xinmin Liu; Qi Chang; Yong-Hong Liao; Ruile Pan

ETHNOPHARMACOLOGICAL RELEVANCE The root of Panax ginseng C.A. Meyer (Family Araliaceae) is an important medicinal plant which has been employed as a panacea for more than 2,000 years in China. It has the actions of invigorating primordial qi, recovering pulse and desertion, engendering liquid, and calming spirit. The water extract of Panax ginseng (WEG) has been used to treat kinds of central nervous system disorders, such as depression, insomnia, Alzheimer׳s disease and Parkinson׳s disease. Our previous work has demonstrated that WEG possessed antidepressant-like activities in both acute and chronic stress models of depression. Nevertheless, there are no studies on the cytoprotection and potential mechanisms of WEG on corticosterone-induced apoptosis. The present study focuses on cytoprotection against corticosterone-induced neurotoxicity in PC12 cells and its underlying molecule mechanisms of the antidepressant-like effect of WEG. MATERIALS AND METHODS The PC12 cells were treated with 250 μmol/L corticosterone in the absence or presence of WEG for 24h, then 3-(4,5-dimethy thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) detection, Hoechst33342 staining and TUNEL staining were investigated to confirm the neuroprotection of WEG. Then, mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), intracellular Ca(2+) ([Ca(2+)]i), reactive oxygen species (ROS) concentration, and the expression level of glucocorticoid receptor (GR), heat shock protein 90 (Hsp90), histone deactylase 6 (HDAC6), glucose-regulated protein 78 (GRP78), growth arrest and DNA damage inducible protein 153 (GADD153), X-box DNA-binding protein-1 (XBP-1), caspase-12, cytochrome C, inhibitor of caspase-activated deoxyribonuclease (ICAD), caspase-3 and caspase-9 were assessed by Western Blot analysis to understand the molecule mechanisms of neuroprotection of WEG. RESULTS WEG partly reversed corticosterone-induced damage in PC12 cells, which increased cell viability, decreased LDH release, and attenuated corticosterone-induced apoptosis as compared with the corticosterone-treated group. Mechanistically, compared with the corticosterone-treated group, WEG strongly attenuated [Ca(2+)]i overload and ROS level, and restored mitochondrial function, including mPTP and MMP. Furthermore, WEG strongly up-regulated the expression of GR and HDAC6, and down-regulated the expression of Hsp90, cytochrome C, ICAD, caspase-3, caspase-9 as well as endoplasmic reticulum (ER) stress-related proteins, such as GADD153, GRP78, XBP-1, and caspase-12. CONCLUSION WEG possessed neuroprotection against corticosterone-induced damage in PC12 cells, and the underlying molecule mechanisms was depended on the intervening of HDAC6 and HSP90 of the GR-related function proteins, and subsequent restoration of ER and mitochondria functions.


Nutrients | 2015

Antioxidant and Anti-Fatigue Constituents of Okra

Fangbo Xia; Yu Zhong; Mengqiu Li; Qi Chang; Yong-Hong Liao; Xinmin Liu; Ruile Pan

Okra (Abelmoschus esculentus (L.) Moench), a healthy vegetable, is widely spread in tropical and subtropical areas. Previous studies have proven that okra pods possess anti-fatigue activity, and the aim of this research is to clarify the anti-fatigue constituents. To achieve this, we divided okra pods (OPD) into seeds (OSD) and skins (OSK), and compared the contents of total polysaccharides, total polyphenols, total flavonoids, isoquercitrin, and quercetin-3-O-gentiobiose and the antioxidant activity in vitro and anti-fatigue activity in vivo between OSD and OSK. The contents of total polyphenols and total polysaccharides were 29.5% and 14.8% in OSD and 1.25% and 43.1% in OSK, respectively. Total flavonoids, isoquercitrin and quercetin-3-O-gentiobiose (5.35%, 2.067% and 2.741%, respectively) were only detected in OSD. Antioxidant assays, including 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant power (FRAP) and reducing power test, and weight-loaded swimming test showed OSD possessed significant antioxidant and anti-fatigue effects. Moreover, biochemical determination revealed that that anti-fatigue activity of OSD is caused by reducing the levels of blood lactic acid (BLA) and urea nitrogen (BUN), enhancing hepatic glycogen storage and promoting antioxidant ability by lowering malondialdehyde (MDA) level and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) levels. These results proved okra seeds were the anti-fatigue part of okra pods and polyphenols and flavonoids were active constituents.


The American Journal of Chinese Medicine | 2010

Platycodon grandiflorum Induces Apoptosis in SKOV3 Human Ovarian Cancer Cells Through Mitochondrial-Dependent Pathway

Qin Hu; Ruile Pan; Liwei Wang; Bo Peng; Jingtian Tang; Xinmin Liu

Platycodon grandiflorum (Jacq.) A. DC., a Chinese food and medicine, has been used as expectorant traditionally. The present study aimed to investigate the effect of Platycodon grandiflorum extract (PGE) on SKOV3 ovarian cancer cells. 3-(4,5- dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay was used to monitor cell numbers, Annexin-V/propidium iodide (PI) staining, RT-PCR and Western blot were used to examine cell apoptosis, caspases activation. Bcl-2 and Bax expressions and mitochondrial cytochrome c release. Our result showed that PGE-induced apoptosis was associated with activation of caspase-3, -8 and -9, down-regulation of Bcl-2, up-regulation of Bax and release of mitochondrial cytochrome c to cytosol. The data indicate that PGE may have anti-tumor effect mainly via caspase-3 and caspase-9 dependent apoptotic pathway.


Pharmacology, Biochemistry and Behavior | 2015

Tenuifolin, a secondary saponin from hydrolysates of polygalasaponins, counteracts the neurotoxicity induced by Aβ25-35 peptides in vitro and in vivo.

Yamin Liu; Zongyang Li; Han Hu; Shuping Xu; Qi Chang; Yong-Hong Liao; Ruile Pan; Xinmin Liu

Alzheimers disease (AD) is associated with damage to hippocampal neurons and declines in cognitive functions. The accumulation of amyloid peptides is regarded as a crucial event in the initiation of AD. The neurotoxicity induced by Aβ25-35 peptides was used to screen for cytoprotective factors in vitro, and the cognitive deficits induced by the injection of Aβ25-35 into the hippocampus were used to evaluate effect on learning and memory. Our previous study revealed that hydrolysate of polygalasaponins (HPS) clearly improve the cognitive deficits induced by the injection of Aβ25-35 in mice, but the potential active constituent of HPS remains unclear. The purposes of this study were to separate and purify the secondary saponins of HPS, screen for neuroprotective effects of the constituents in vitro, and to evaluate the effect of cognition in vivo. Various chromatographic methods were used to separate and purify the HPS. The neuroprotective effects were examined in Aβ25-35-damage-induced PC12 cells. The protective effect of tenuifolin on the cognitive impairments induced by Aβ25-35 injection was assessed using the Morris water maze and step-through passive avoidance tests. Tenuifolin and fallaxsaponin A were isolated from the HPS. Tenuifolin possessed neuroprotective effects against Aβ25-35-induced apoptosis in PC12 cells and significantly improved the cognitive deficits induced by the intrahippocampal injection of Aβ25-35 in mice. Thus, tenuifolin is one of the active constituents of HPS against the neurotoxicity induced by Aβ25-35 peptides in vitro and in vivo.


Neurochemistry International | 2014

Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis.

Yamin Liu; Shengnan Shen; Zongyang Li; Yumao Jiang; Jianyong Si; Qi Chang; Xinmin Liu; Ruile Pan

It has been reported that high corticosterone level could damage the normal hippocampal neurons both in vitro and in vivo. Furthermore, high concentration of corticosterone induced impair in PC12 cells has been widely used as in vitro model to screen neuroprotective agents. Cajaninstilbene acid (CSA), a natural stilbene isolated from Cajanus cajan leaves, has various activities. In present study, we investigated the effect of CSA on corticosterone-induced cell apoptosis and explored its possible signaling pathways in PC12 cells. We demonstrated that pretreatment with CSA at the concentrations of 1-8 μmol/L remarkably reduced the cytotoxicity induced by 200 μmol/L of corticosterone in PC12 cells by MTT, and further confirmed the neuroprotection by Hoechst 33342 and PI double staining and lactate dehydrogenase release (LDH) assay at the concentration of 8 μmol/L. Moreover, the cytoprotection of CSA was proved to be associated with the homeostasis of intracellular Ca(2+), relieving corticosterone-induced oxidative stress by decreasing the contents of ROS and malondialdehyde (MDA), increasing the activities of superoxide dismutase (SOD) and catalase (CAT), and the stabilization of ER stress via down-regulating the expression of ER chaperone protein glucose-regulated protein 78 (GRP78), ER stress associated transcription factor C/EBP homologous protein (CHOP/GADD153), and the X box-binding protein-1 (XBP-1), as well as the expression of ER stress-specific protein caspase-12 and its downstream protein caspase-9. Considering all the findings, it is suggested that the neuroprotective activity of CSA against the impairment induced by corticosterone in PC12 cells was through the inhibition of oxidative stress and ER stress-mediated pathway.


Journal of Pharmaceutical and Biomedical Analysis | 2016

LC/MS-based metabolomics strategy to assess the amelioration effects of ginseng total saponins on memory deficiency induced by simulated microgravity

Li Feng; Xiao-fei Yue; Yi-xi Chen; Xinmin Liu; Li-Sha Wang; Fang-Rui Cao; Qiong Wang; Yong-Hong Liao; Ruile Pan; Qi Chang

Microgravity-induced memory deficiency seriously affects learning and memory ability of the astronaut during spaceflight, with few effective countermeasures. Panax ginseng C. A. Mey. has been used as a nootropic herb for thousands of years in Asian countries. Saponins are recognized as its major active components. Previous studies have shown that ginseng saponins offer protection against memory deficits caused by various factors. Nevertheless, the underlying mechanisms of their nootropic effects are still largely unknown. In this study, we evaluated the memory-improving effects of ginseng total saponins (GTS) on simulated microgravity hindlimb-unloaded rats using a metabolomics approach. After being exposed to a 7-days hindlimb unloading (HU), variations of plasmatic and hippocampal metabolic profiles of rats with and without GTS intervention were examined by a liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics method. Subsequently, 8 hippocampal neurotransmitters were determined using a LC-MS/MS method. Finally, a LC-MS/MS based targeted metabolomics was performed to validate biomarkers found in the untargeted analysis. Besides, to support the metabolomics results, passive avoidance (PA) test, Nissl staining, and plasmatic corticosterone (CORT) levels determination were performed. The results showed that HU could lead to variations of 7 neurotransmitters and significantly different plasmatic and hippocampal metabolic profiles. GTS could restore most of the imbalanced neurotransmitters, especially glutamic acid and acetylcholine, and correct the levels of various disturbed learning and memory relevant biomarkers such as asparagine, phenylalanine, tyrosine, tryptophan, and choline. In addition, GTS could markedly ameliorate HU-induced memory deficiency, protect hippocampal neurons from damage, and down-regulate elevated CORT levels. In conclusion, GTS exhibits memory-improving effects mainly through regulating the metabolism of amino acids, neurotransmitters, choline, kynurenine, and sphingolipids. The findings of this study not only can deepen our understanding of the underlying molecular mechanisms of MG-induced memory disorders, but also provide scientific evidence for choosing ginseng as a countermeasure against MG-induced memory deficiency.


Journal of Ethnopharmacology | 2015

An LC-MS/MS method for simultaneous determination of three Polygala saponin hydrolysates in rat plasma and its application to a pharmacokinetic study

Qian Wang; Bing-Xin Xiao; Ruile Pan; Xinmin Liu; Yong-Hong Liao; Li Feng; Fang-Rui Cao; Qi Chang

ETHNOPHARMACOLOGICAL RELEVANCE Radix Polygala has a long history of use as a sedative in traditional Chinese medicine and its major ingredients are saponins, which are recognized effective in memory improvement but highly toxic to gastricintestinal mucosa. Polygala saponin hydrolysates (PSH), an alkaline hydrolysis product and also the intestinal metabolites of the saponins, exhibited stronger effects in improving memory of mice and had less toxicity than its original saponins. The present study aims to develop a sensitive LC-MS/MS method for simultaneously determining PSH three major active components, 3,4,5-trimethoxycinnamylic acid (TMCA), p-methoxycinnamylic acid (PMCA) and tenuifolin (TF), in rat plasma and apply the method to a pharmacokinetic study. MATERIALS AND METHODS The acidic plasma (100μl) was treated by liquid-liquid extraction with ethyl acetate and reconstituted sample was analyzed on a C18 column eluted with acetonitrile-water (50:50) containing 0.2% formic acid at 0.4ml/min. The mass detection in negative electrospray ionization was used. The ion pairs for multiple reaction monitoring were set at m/z 237.0/103.0, 177.0/116.6 and 679.5/425.3 for TMCA, PMCA and TF, respectively. Their pharmacokinetic profiles were studied in rats after intravenous and oral dose of PSH at 20 and 100mg/kg, respectively. RESULTS The calibration curves had good linearity (r(2)>0.99) for TMCA, PMCA and TF within the tested concentration ranges. The limits of detection and quantification were 1, 10, 0.5ng/ml and 10.0, 20.0, 1.0ng/ml, respectively. The intra-day and inter-day precisions were less than 18.9% and accuracies between 93.2% and 113.3%, and the extraction recovery ranged from 91.2% to 112.1% for all analytes. The pharmacokinetic study showed that TMCA, PMCA and TF could be rapidly absorbed into the circulation and reached their peak concentrations at about 9.1, 9.0 and 24.0min, respectively. TF had a lower oral bioavailability (2.0%) than TMCA (90.1%) and PMCA (96.5%), but it remained in the body much longer (t1/2, λz, 4.8h, oral dose) than TMCA (0.6h) and PMCA (0.9h). CONCLUSIONS A sensitive LC-MS/MS method was developed and applied to a pharmacokinetic study of TMCA, PMCA and TF of PSH in rats. The three components are proved to be bio-available active components of PSH and might display their in vivo pharmacological activities at different levels and different time periods after oral administration.


Journal of Ethnopharmacology | 2016

Anti-stress effects of ginseng total saponins on hindlimb-unloaded rats assessed by a metabolomics study

Li Feng; Xinmin Liu; Fang-Rui Cao; Li-Sha Wang; Yi-xi Chen; Ruile Pan; Yong-Hong Liao; Qiong Wang; Qi Chang

ETHNOPHARMACOLOGICAL RELEVANCE Ginseng, the roots and rhizomes of Panax ginseng C.A. Mey. (Araliaceae), is used as a tonic herb for thousands of years in Asian countries. Saponins are recognized as its major active ingredients and reportedly can ease disorders caused by various adverse stimuli. Nevertheless, it is unclear whether ginseng saponins have beneficial effects on stress caused by microgravity. AIM OF THE STUDY This study aimed to assess the anti-stress effects and corresponding mechanisms of ginseng total saponins (GTSs) on simulated microgravity (SM) hindlimb-unloaded rats using a metabolomics method. MATERIALS AND METHODS The stressed rats were induced by hindlimb unloading for 7 continuous days. Levels of plasma corticosterone (CORT) and weights of immune organs including the thymuses, spleens, and adrenal glands were determined. Urinary metabolic profiles of the rats under the simulated microgravity condition with and without GTSs intervention were compared using an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) based metabolomics method. Multivariate statistical analysis including Principal Component Analysis (PCA) and Partial Least Squares project to latent structures-Discriminant Analysis (PLS-DA) were performed. RESULTS Compared with control (66.22±10.40ng/mL), the plasma CORT level of the SM rats (82.67±13.64ng/mL) were significantly (p<0.05) elevated, and GTSs could restore this elevation to a lower level (77.75±14.35ng/mL). GTSs could also significantly alleviate the atrophy of the thymuses and the spleens, as well as the hypertrophy of the adrenal glands of the SM rats. Urinary metabolic profiling showed comprehensive metabolic variation among the three groups. A series of metabolic pathways including taurine and hypotaurine, purine and pyridine, and amino acid were affected. Eleven potential biomarkers such as taurine, adenine, and valine were identified. GTSs could correct the disturbed metabolic pathways and restore the variation of these potential markers. CONCLUSION GTSs can exert anti-stress effects by reducing the secretion of plasma CORT, enhancing the immune function, and restoring an array of disturbed metabolic pathways and metabolites. The findings of this study provide crucial evidence of a link between metabolic imbalance and microgravity, and reveal a molecular basis for the anti-stress benefits of GTSs in the management of microgravity-related disorders.

Collaboration


Dive into the Ruile Pan's collaboration.

Top Co-Authors

Avatar

Xinmin Liu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Qi Chang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yong-Hong Liao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Yamin Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fang-Rui Cao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Zongyang Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Bing-Xin Xiao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jianyong Si

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Li-Sha Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Chun-Yu Liu

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge