Ruining He
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruining He.
international conference on data mining | 2016
Ruining He; Julian McAuley
Predicting personalized sequential behavior is a key task for recommender systems. In order to predict user actions such as the next product to purchase, movie to watch, or place to visit, it is essential to take into account both long-term user preferences and sequential patterns (i.e., short-term dynamics). Matrix Factorization and Markov Chain methods have emerged as two separate but powerful paradigms for modeling the two respectively. Combining these ideas has led to unified methods that accommodate long-and short-term dynamics simultaneously by modeling pairwise user-item and item-item interactions. In spite of the success of such methods for tackling dense data, they are challenged by sparsity issues, which are prevalent in real-world datasets. In recent years, similarity-based methods have been proposed for (sequentially-unaware) item recommendation with promising results on sparse datasets. In this paper, we propose to fuse such methods with Markov Chains to make personalized sequential recommendations. We evaluate our method, Fossil, on a variety of large, real-world datasets. We show quantitatively that Fossil outperforms alternative algorithms, especially on sparse datasets, and qualitatively that it captures personalized dynamics and is able to make meaningful recommendations.
very large data bases | 2017
Jianguo Wang; Chunbin Lin; Ruining He; Moojin Chae; Yannis Papakonstantinou; Steven Swanson
Inverted list compression is a topic that has been studied for 50 years due to its fundamental importance in numerous applications including information retrieval, databases, and graph analytics. Typically, an inverted list compression algorithm is evaluated on its space overhead and query processing time. Earlier list compression designs mainly focused on minimizing the space overhead to reduce expensive disk I/O time in disk-oriented systems. But the recent trend is shifted towards reducing query processing time because the underlying systems tend to be memory-resident. Although there are many highly optimized compression approaches in main memory, there is still a considerable performance gap between query processing over compressed lists and uncompressed lists, which motivates this work. In this work, we set out to bridge this performance gap for the first time by proposing a new compression scheme, namely, MILC (memory inverted list compression). MILC relies on a series of techniques including offset-oriented fixed-bit encoding, dynamic partitioning, in-block compression, cache-aware optimization, and SIMD acceleration. We conduct experiments on three real-world datasets in information retrieval, databases, and graph analytics to demonstrate the high performance and low space overhead of MILC. We compare MILC with 12 recent compression algorithms and experimentally show that MILC improves the query performance by up to 13.2× and reduces the space overhead by up to 4.7×.
international joint conference on artificial intelligence | 2017
Chenwei Cai; Ruining He; Julian McAuley
Dealing with sparse, long-tailed datasets, and cold-start problems is always a challenge for recommender systems. These issues can partly be dealt with by making predictions not in isolation, but by leveraging information from related events; such information could include signals from social relationships or from the sequence of recent activities. Both types of additional information can be used to improve the performance of state-of-the-art matrix factorization-based techniques. In this paper, we propose new methods to combine both social and sequential information simultaneously, in order to further improve recommendation performance. We show these techniques to be particularly effective when dealing with sparsity and cold-start issues in several large, real-world datasets.
international joint conference on artificial intelligence | 2018
Ruining He; Wang-Cheng Kang; Julian McAuley
Modeling the complex interactions between users and items is at the core of designing successful recommender systems. One key task consists of predicting users’ personalized sequential behavior, where the challenge mainly lies in modeling ‘third-order’ interactions between a user, her previously visited item(s), and the next item to consume. In this paper, we propose a unified method, TransRec, to model such interactions for largescale sequential prediction. Methodologically, we embed items into a ‘transition space’ where users are modeled as translation vectors operating on item sequences. Empirically, this approach outperforms the state-of-the-art on a wide spectrum of real-world datasets.
international world wide web conferences | 2016
Ruining He; Julian McAuley
national conference on artificial intelligence | 2016
Ruining He; Julian McAuley
conference on recommender systems | 2016
Ruining He; Chen Fang; Zhaowen Wang; Julian McAuley
conference on recommender systems | 2017
Ruining He; Wang-Cheng Kang; Julian McAuley
international conference on data mining | 2016
Ruining He; Charles Packer; Julian McAuley
international joint conference on artificial intelligence | 2016
Ruining He; Chunbin Lin; Jianguo Wang; Julian McAuley