Ruirui Jiang
Henan Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruirui Jiang.
Scientific Reports | 2016
Hong Li; Zheng Ma; Lijuan Jia; Yanmin Li; Chunlin Xu; Taian Wang; Ruili Han; Ruirui Jiang; Zhuanjian Li; Guirong Sun; Xiangtao Kang; Xiaojun Liu
Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be significant differentially expressed (false discovery rate, FDR ≤ 0.05) (SDE) in the 30-week-old. We also identified 13 down- and 6 up-regulated novel differentially expressed (DE) microRNAs. miR-22-3p and miR-146b-5p, which exhibit critical roles in mammalian lipid metabolism, showed the most abundant expression and the highest fold-change, respectively. A total of 648 potential target genes of the SDE microRNAs were identified through an integrated analysis of microRNAs and the DE genes obtained in previous RNA-sequencing, including FADS1, FADS2, ELOVL6 and ACSL5, which are critical lipid metabolism-related regulators. Bioinformatic analyses revealed that target genes were mainly enriched in lipid-related metabolism processes. This work provides the first study of the expression patterns of hepatic microRNAs between 20- and 30-week old hens. The findings may serve as a fundamental resource for understanding the detailed functions of microRNAs in the molecular regulatory systems of lipid metabolism.
Scientific Reports | 2017
Meng Zhang; Fengbin Yan; Fang Li; Keren Jiang; Donghua Li; Ruili Han; Zhuan-Jan Li; Ruirui Jiang; Xiaojun Liu; Xiangtao Kang; Guirong Sun
Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing. The results showed that the later laying-period hens, which had a higher intramuscular fat (IMF) deposition capacity and water holding capacity (WHC) and less tenderness, exhibited higher global DNA methylation levels than the juvenile hens. A total of 2,714 differentially methylated regions were identified in the present study, which corresponded to 378 differentially methylated genes, mainly affecting muscle development, lipid metabolism, and the ageing process. Hypermethylation of the promoters of the genes ABCA1, COL6A1 and GSTT1L and the resulting transcriptional down-regulation in the later laying-period hens may be the reason for the significant difference in the meat quality between the juvenile and later laying-period hens. These findings contribute to a better understanding of epigenetic regulation in the skeletal muscle development and meat quality of chicken.
Gene | 2015
Hong Li; Shanhe Wang; Fengbin Yan; Xiaojun Liu; Ruirui Jiang; Ruili Han; Zhuanjian Li; Guoxi Li; Yadong Tian; Xiangtao Kang; Guirong Sun
Genetic variations in microRNAs (miRNAs) including primary miRNAs, precursor miRNAs and mature miRNAs can lead to phenotypic variation by altering the biogenesis of miRNAs and/or their binding to target mRNAs. Increasing functional studies suggest that polymorphisms occurring in miRNAs can lead to phenotypic variation in farm animal. Here, we identified a single nucleotide polymorphism (SNP) located in the precursor of chicken miRNA-1606 gene. The association study on body indexes, body weight at different growth stages, and carcass traits was performed in a Gushi-Anka F2 population resource. The SNP was not only significantly associated with body weight at 10 and 12 weeks, respectively, but also with chicken shank length, chest depth and body slanting length at 8 weeks; shank length, pectoral angle, body slanting length and pelvis breadth at 12 weeks, respectively. And the polymorphism was also significantly associated with carcass traits including semi-evisceration weight, evisceration weight, breast muscle weight, leg weight and carcass weight as well. The observed values of individuals with CA genotype were significantly higher than CC genotype both in body weight at different stages and carcass traits. This SNP altered the predicted second structure of pre-mir-1606, with the altering of the free energy values. And the relative expression level of mature miRNA between CA and AA was significantly changed in leg muscle. Our data suggested that miRNA-1606 may be a candidate gene associated with chicken growth traits.
Journal of Cellular Biochemistry | 2018
Yanting Zhou; Weihua Tian; Meng Zhang; Tuanhui Ren; Guirong Sun; Ruirui Jiang; Ruili Han; Xiangtao Kang; Fengbin Yan
Stress‐induced immunosuppression is one of the serious threats to the poultry industry, especially obvious for young chicken. However, the molecular mechanism of stress‐induced immunosuppression has not been clear in chicken. Here, we established an immunosuppression model of 7‐day‐old chickens with injecting dexamethasone (Dex) to analyze the molecular regulation in the chicken thymus. The microRNAs (miRNAs) transcripts profiles of thymuses from the model and control group were identified by the Solexa sequencing technology. The results showed 121 significantly differently expressed (SDE) miRNAs, including 119 known and two novel miRNAs (novel‐58 and novel‐350). A total of 391 target genes of the SDE miRNAs were predicted and annotated. We verified the potential negative correlation between gga‐miR‐103‐3p and TGM2 by quantitative real‐time polymerase chain reaction (qRT‐PCR), as well as between novel‐350 and PCBD2, and the results were positive. Gene ontology (GO) enrichment analysis showed that there was 298 significant enrichment GO terms, in which 31 were related to immune or stress, such as lymphocyte apoptotic process and response to stress. KEGG pathway analysis suggested that the SDE miRNAs were involved in autophagy regulation, cytokine‐cytokine receptor interaction, Toll‐like receptor signaling pathway, Jak‐STAT signaling pathway, and so on (although not significantly enriched). In these immune signaling pathways, the SDE miRNAs (such as gga‐miR‐2954, gga‐miR‐146b‐3p, gga‐miR‐106‐3p, and gga‐miR‐214) and the predicted target genes (such as IL11Ra, CSF3R, IFNGR1, CNTF, and MAP2K2) might affect the thymus immune function of chicken. The above results would provide a basis for uncovering the molecular regulation mechanism of immunosuppression in poultry.
Cellular Physiology and Biochemistry | 2018
Meng Zhang; Donghua Li; Fang Li; Jun-Wei Sun; Ruirui Jiang; Zhuanjian Li; Ruili Han; Guoxi Li; Xiaojun Liu; Xiangtao Kang; Guirong Sun
Background/Aims: Poultry meat quality is affected by many factors, among which intramuscular fat (IMF) is predominant. IMF content affects the tenderness, juiciness, and favor of chicken. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) during the adipogenic process. However, little is known about miRNAs associated with poultry IMF deposition, especially intramuscular adipocyte differentiation. Methods: The IMF content of two physiological stages was measured, and miRNA-Seq and RNA-Seq data were integrated and analyzed. A chicken intramuscular adipocyte cell differentiation model was constructed. A luciferase reporter assay, miRNA overexpression, and Oil Red O staining were used to confirm the targets of gga-miR-140-5p. Results: Our results showed that late-laying-period hens, which had a higher IMF content, exhibited lower global expression levels of miRNAs than juvenile hens. A total of 104 differentially expressed (DE) miRNAs were identified between the two groups. Integrated analysis of differentially expressed genes and DE miRNAs identified a total of 378 miRNA-mRNA pairs. Functional enrichment analysis revealed that these intersecting genes are involved in ubiquitin-mediated proteolysis, the peroxisome proliferator-activated receptor signaling pathway, glycerophospholipid metabolism, and fatty acid elongation and degradation pathways. Furthermore, we demonstrated that gga-miR-140-5p promoted intramuscular adipocyte differentiation via targeting retinoid X receptor gamma. Conclusion: Our findings may contribute to a more thorough understanding of chicken IMF deposition and the improvement of poultry meat quality.
Animal Cells and Systems | 2017
Keren Jiang; Meng Zhang; Fang Li; Donghua Li; Guirong Sun; Xiaojun Liu; Hong Li; Ruili Han; Ruirui Jiang; Zhuanjian Li; Xiangtao Kang; Fengbin Yan
ABSTRACT Growth factor receptor-bound protein 2 (Grb2) have been proved by a lot of studies playing a major role in cell proliferation and cell differentiation. However, the regulation of Grb2 expression by microRNAs (miRNAs) in chicken breast muscle still remains unknown. The expression profile of Grb2 was checked based on our previous RNA sequencing data and the Grb2 relative expression level in breast muscle of aged hens (55-week-old) was validated significantly higher than juvenile hens (20-week-old) using qRT-PCR. miRNAs that interact with Grb2 have been predicted in chicken and the relationship between the potential miRNA and Grb2 was verified using dual luciferase reporter assay in chicken DF1 cells. Dual-luciferase reporter assays results demonstrated that the expression of luciferase reporter gene linked with part sequence of the 3′UTR of chicken Grb2 gene was down-regulated by the overexpression of gga (Gallus Gallus)-miR-200a-3p in the DF1 cells, and the down-regulation behavior was abolished when the gga-miR-200a-3p binding site in 3′UTR of Grb2 was mutated, indicating that gga-miR-200a can suppress the expression level of its target gene Grb2. Therefore, we concluded that the significantly increased expression level of Grb2 in the breast muscle of aged chicken can (at least partly can) be explained by the decreased expression of miR-200a, which reduced the inhibitory effect on Grb2. Taken together, these findings suggest that gga-miR-200a can suppress the expression level of its target gene Grb2 and might be involved in the cell differentiation and proliferation of chicken breast muscle through binding with the 3’UTR of Grb2.
Animal Biotechnology | 2017
Y.C. Wang; R.L. Han; Zhuanjian Li; J. Geng; Yadong Tian; Ruirui Jiang; J.P. Wu; Xiangtao Kang
ABSTRACT Research on the identity of genes and their relationship with traits of economic importance in chickens could assist in the selection of poultry. In this study, an F2 resource population of Gushi chickens crossed with Anka broilers was used to detect single-nucleotide polymorphisms (SNPs) in the flanking region of the ASB15 gene by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). One SNP of −1271 C>T in 5′ flanking region of the chicken ASB15 gene and two SNPs of the 10618 A>G and 10716 G>A in 3′ flanking region were identified. Furthermore, the 10618 A>G and 10716 G>A in 3′ flanking region were in complete linkage. Association analysis results showed that −1271 C>T was not associated with performance traits, while the 10618 A>G and 10716 G>A were significantly associated with BW2, 4, 6, 8, 10, 12, SL12, CD8, CW4, 8, 12, BSL4, 8, 12, and SEW, EW, WW, BMW, LW, CW, SFT. Our results suggest that the ASB15 gene profoundly affects chicken performance traits.
Animal Genetics | 2016
Xingxing Mei; Xiangtao Kang; Xiaojun Liu; Lijuan Jia; Hong Li; Zhuanjian Li; Ruirui Jiang
Molecular Biology Reports | 2013
Xin‐yan Hou; R.L. Han; Yadong Tian; Wan‐ying Xie; Guirong Sun; Guoxi Li; Ruirui Jiang; Xiangtao Kang
BMC Genomics | 2018
Zhuanjian Li; Xuelian Liu; Panpan Zhang; Ruili Han; Guirong Sun; Ruirui Jiang; Yanbin Wang; Xiaojun Liu; Wenya Li; Xiangtao Kang; Yadong Tian