Ruirui Lu
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruirui Lu.
The Journal of Neuroscience | 2012
Marco Sisignano; Chul-Kyu Park; Carlo Angioni; Dong Dong Zhang; Christian von Hehn; Enrique J. Cobos; Nader Ghasemlou; Zhen-Zhong Xu; Vigneswara Kumaran; Ruirui Lu; Andrew D. Grant; Michael J. M. Fischer; Achim Schmidtko; Peter W. Reeh; Ru-Rong Ji; Clifford J. Woolf; Gerd Geisslinger; Klaus Scholich; Christian Brenneis
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord.
The Journal of Neuroscience | 2012
Wiebke Kallenborn-Gerhardt; Katrin Schröder; Domenico Del Turco; Ruirui Lu; Katharina L. Kynast; Judith Kosowski; Ellen Niederberger; Ajay M. Shah; Ralf P. Brandes; Gerd Geisslinger; Achim Schmidtko
Reactive oxygen species (ROS) contribute to sensitization of pain pathways during neuropathic pain, but little is known about the primary sources of ROS production and how ROS mediate pain sensitization. Here, we show that the NADPH oxidase isoform Nox4, a major ROS source in somatic cells, is expressed in a subset of nonpeptidergic nociceptors and myelinated dorsal root ganglia neurons. Mice lacking Nox4 demonstrated a substantially reduced late-phase neuropathic pain behavior after peripheral nerve injury. The loss of Nox4 markedly attenuated injury-induced ROS production and dysmyelination processes of peripheral nerves. Moreover, persisting neuropathic pain behavior was inhibited after tamoxifen-induced deletion of Nox4 in adult transgenic mice. Our results suggest that Nox4 essentially contributes to nociceptive processing in neuropathic pain states. Accordingly, inhibition of Nox4 may provide a novel therapeutic modality for the treatment of neuropathic pain.
PLOS ONE | 2011
Ruirui Lu; Wiebke Kallenborn-Gerhardt; Gerd Geisslinger; Achim Schmidtko
Accumulating evidence indicates that increased generation of reactive oxygen species (ROS) contributes to the development of exaggerated pain hypersensitivity during persistent pain. In the present study, we investigated the antinociceptive efficacy of the antioxidants vitamin C and vitamin E in mouse models of inflammatory and neuropathic pain. We show that systemic administration of a combination of vitamins C and E inhibited the early behavioral responses to formalin injection and the neuropathic pain behavior after peripheral nerve injury, but not the inflammatory pain behavior induced by Complete Freunds Adjuvant. In contrast, vitamin C or vitamin E given alone failed to affect the nociceptive behavior in all tested models. The attenuated neuropathic pain behavior induced by the vitamin C and E combination was paralleled by a reduced p38 phosphorylation in the spinal cord and in dorsal root ganglia, and was also observed after intrathecal injection of the vitamins. Moreover, the vitamin C and E combination ameliorated the allodynia induced by an intrathecally delivered ROS donor. Our results suggest that administration of vitamins C and E in combination may exert synergistic antinociceptive effects, and further indicate that ROS essentially contribute to nociceptive processing in special pain states.
The Journal of Neuroscience | 2011
Sandra Heine; Stylianos Michalakis; Wiebke Kallenborn-Gerhardt; Ruirui Lu; Hee-Young Lim; Jessica Weiland; Domenico Del Turco; Thomas Deller; Irmgard Tegeder; Martin Biel; Gerd Geisslinger; Achim Schmidtko
A large body of evidence indicates that nitric oxide (NO) and cGMP contribute to central sensitization of pain pathways during inflammatory pain. Here, we investigated the distribution of cyclic nucleotide-gated (CNG) channels in the spinal cord, and identified the CNG channel subunit CNGA3 as a putative cGMP target in nociceptive processing. In situ hybridization revealed that CNGA3 is localized to inhibitory neurons of the dorsal horn of the spinal cord, whereas its distribution in dorsal root ganglia is restricted to non-neuronal cells. CNGA3 expression is upregulated in the superficial dorsal horn of the mouse spinal cord and in dorsal root ganglia following hindpaw inflammation evoked by zymosan. Mice lacking CNGA3 (CNGA3−/− mice) exhibited an increased nociceptive behavior in models of inflammatory pain, whereas their behavior in models of acute or neuropathic pain was normal. Moreover, CNGA3−/− mice developed an exaggerated pain hypersensitivity induced by intrathecal administration of cGMP analogs or NO donors. Our results provide evidence that CNGA3 contributes in an inhibitory manner to the central sensitization of pain pathways during inflammatory pain as a target of NO/cGMP signaling.
Journal of Immunology | 2011
Christine V. Möser; Katharina L. Kynast; Katharina Baatz; Otto Quintus Russe; Nerea Ferreirós; Heike Costiuk; Ruirui Lu; Achim Schmidtko; Irmgard Tegeder; Gerd Geisslinger; Ellen Niederberger
Inhibitor-κB kinase ε (IKKε) was only recently identified as an enzyme with high homology to the classical I-κB kinase subunits, IKKα and IKKβ. Despite this similarity, it is mainly discussed as a repressor of viral infections by modulating type I IFNs. However, in vitro studies also showed that IKKε plays a role in the regulation of NF-κB activity, but the distinct mechanisms of IKKε-mediated NF-κB activation are not clear. Given the paramount role of NF-κB in inflammation, we investigated the regulation and function of IKKε in models of inflammatory hyperalgesia in mice. We found that IKKε was abundantly expressed in nociceptive neurons in the spinal cord and in dorsal root ganglia. IKKε mRNA and protein levels rapidly increased in spinal cord and dorsal root ganglia during hind paw inflammation evoked by injection of zymosan or formalin. IKKε knockout mice showed normal nociceptive responses to acute heat or mechanical stimulation. However, in inflammatory pain models, IKKε-deficient mice exhibited a significantly reduced nociceptive behavior in comparison with wild type mice, indicating that IKKε contributed to the development of inflammatory hyperalgesia. Antinociceptive effects were associated with reduced activation of NF-κB and attenuated NF-κB–dependent induction of cyclooxygenase-2, inducible NO synthase, and metalloproteinase-9. In contrast, IRF-3, which is an important IKKε target in viral infections, was not regulated after inflammatory nociceptive stimulation. Therefore, we concluded that IKKε modulates inflammatory nociceptive sensitivity by activation of NF-κB–dependent gene transcription and may be useful as a therapeutic target in the treatment of inflammatory pain.
The Journal of Neuroscience | 2015
Ruirui Lu; Anne E. Bausch; Wiebke Kallenborn-Gerhardt; Carsten Stoetzer; Natasja deBruin; Peter Ruth; Gerd Geisslinger; Andreas Leffler; Robert Lukowski; Achim Schmidtko
Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain.
Pain | 2014
Ruirui Lu; Robert Lukowski; Matthias Sausbier; Dong Dong Zhang; Marco Sisignano; Claus-Dieter Schuh; Rohini Kuner; Peter Ruth; Gerd Geisslinger; Achim Schmidtko
Summary The in vivo function of large conductance calcium‐activated potassium channels in sensory neurons includes control of inflammatory pain, but not of acute nociceptive or nerve injury‐induced neuropathic pain. ABSTRACT Large conductance calcium‐activated potassium (BKCa) channels are important regulators of neuronal excitability. Although there is electrophysiological evidence for BKCa channel expression in sensory neurons, their in vivo functions in pain processing have not been fully defined. Using a specific antibody, we demonstrate here that BKCa channels are expressed in subpopulations of peptidergic and nonpeptidergic nociceptors. To test a functional association of BKCa channel activity in sensory neurons with particular pain modalities, we generated mice in which BKCa channels are ablated specifically from sensory neurons and analyzed their behavior in various models of pain. Mutant mice showed increased nociceptive behavior in models of persistent inflammatory pain. However, their behavior in models of neuropathic or acute nociceptive pain was normal. Moreover, systemic administration of the BKCa channel opener, NS1619, inhibited persistent inflammatory pain. Our investigations provide in vivo evidence that BKCa channels expressed in sensory neurons exert inhibitory control on sensory input in inflammatory pain states.
Pain | 2014
Wiebke Kallenborn-Gerhardt; Stephan W. Hohmann; Katharina M.J. Syhr; Katrin Schröder; Marco Sisignano; Andreas Weigert; Jana E. Lorenz; Ruirui Lu; Bernhard Brüne; Ralf P. Brandes; Gerd Geisslinger; Achim Schmidtko
&NA; Nox2 produces reactive oxygen species in dorsal root ganglia macrophages after peripheral nerve injury, thereby contributing to TNF&agr;‐dependent neuropathic pain signaling. &NA; Emerging lines of evidence indicate that production of reactive oxygen species (ROS) at distinct sites of the nociceptive system contributes to the processing of neuropathic pain. However, the mechanisms underlying ROS production during neuropathic pain processing are not fully understood. We here detected the ROS‐generating nicotinamide adenine dinucleotide phosphate oxidase isoform Nox2 in macrophages of dorsal root ganglia (DRG) in mice. In response to peripheral nerve injury, Nox2‐positive macrophages were recruited to DRG, and ROS production was increased in a Nox2‐dependent manner. Nox2‐deficient mice displayed reduced neuropathic pain behavior after peripheral nerve injury, whereas their immediate responses to noxious stimuli were normal. Moreover, injury‐induced upregulation of tumor necrosis factor &agr; was absent, and activating transcription factor 3 induction was reduced in DRG of Nox2‐deficient mice, suggesting an attenuated macrophage‐neuron signaling. These data suggest that Nox2‐dependent ROS production in macrophages recruited to DRG contributes to neuropathic pain hypersensitivity, underlining the observation that Nox‐derived ROS exert specific functions during the processing of pain.
Antioxidants & Redox Signaling | 2014
Jana E. Lorenz; Wiebke Kallenborn-Gerhardt; Ruirui Lu; Katharina M.J. Syhr; Philip Eaton; Gerd Geisslinger; Achim Schmidtko
AIMS Emerging lines of evidence indicate that oxidants such as hydrogen peroxide exert specific signaling functions during the processing of chronic pain. However, the mechanisms by which oxidants regulate pain processing in vivo remain poorly understood. Here, we investigated whether cyclic guanosine monophosphate (cGMP)-dependent protein kinase Iα (cGKIα), which can be activated by oxidants independently of cGMP, serves as a primary redox target during pain processing. RESULTS After peripheral nerve injury, oxidant-induced cGKIα activation is increased in dorsal root ganglia of mice. Knock-in (KI) mice in which cGKIα cannot transduce oxidant signals demonstrated reduced neuropathic pain behaviors after peripheral nerve injury, and reduced pain behaviors after intrathecal delivery of oxidants. In contrast, acute nociceptive, inflammatory, and cGMP-induced pain behaviors were not impaired in these mice. INNOVATION Studying cGKIα KI mice, we provide the first evidence that oxidants activate cGKIα in sensory neurons after peripheral nerve injury in vivo. CONCLUSION Our results suggest that oxidant-induced activation of cGKIα specifically contributes to neuropathic pain processing, and that prevention of cGKIα redox activation could be a potential novel strategy to manage neuropathic pain.
Methods of Molecular Biology | 2013
Ruirui Lu; Achim Schmidtko
Intrathecal delivery of drugs is an important method in pain research in order to investigate pain-relevant effects in the spinal cord in vivo. Here, we describe a method of intrathecal drug delivery by direct lumbar puncture in mice. The procedure does not require surgery, is rapidly performed, and does not produce neurological deficits. If cGMP analogs are injected, a state of transient hindpaw hypersensitivity can be induced which is quantifiable by measurement of hindpaw withdrawal latency in response to mechanical stimulation.